Citation: ZHANG Fang, ZHANG Xiao-Gang. Mn2O3 Sub-Micron Powder: Preparation via Complex Thermolysis Route and Electrochemical Properties[J]. Chinese Journal of Inorganic Chemistry, ;2012, 28(12): 2626-2632. shu

Mn2O3 Sub-Micron Powder: Preparation via Complex Thermolysis Route and Electrochemical Properties

  • Corresponding author: ZHANG Xiao-Gang, 
  • Received Date: 10 April 2012
    Available Online: 18 June 2012

    Fund Project: 江苏省自然科学基金(No.BK2011740) (No.BK2011740)江苏省博士后科研资助计划(No.1001016B)资助项目. (No.1001016B)

  • This report describes a facile preparation and electrochemical properties of Mn2O3 sub-micron powder via thermal decomposition of an isonicotinic acid manganese complex. An isonicotinic acid manganese complex of [Mn(INA)2(H2O)4]n (INA=isonicotinic acid) was synthesized by liquid diffusion method using an aqueous solution of manganese acetate and isonicotinic acid as the raw material. Mn2O3 sub-micron powder was then prepared by solid-state thermolysis of the as-synthesized INA-Mn complex at higher temperature under atmospheric pressure. The obtained products were characterized by FTIR, TG-DTA, XRD, TEM and FESEM. As an electrode material for supercapacitors, the prepared Mn2O3 electrode shows a strong cycle stability in 0.5 mol·g-1 Na2SO4 electrolyte and a specific capacitance of 88 F·g-1 at a current density of 0.5 A·g-1 vs. the saturated calomel electrode (SCE).
  • 加载中
    1. [1]

      [1] Du J, Gao Y Q, Li L, et al. Nanotechnology, 2006,17:4923-4928

    2. [2]

      [2] Yu P, Zhang X, Chen Y, et al. Mater. Chem. Phys., 2009, 118:303-307

    3. [3]

      [3] Jiang H, Zhao T, Yan C Y, et al. Nanoscale, 2010,2:2195-2198

    4. [4]

      [4] Baldi M. Appl. Catal. B: Environ., 1998,17:L175-L182

    5. [5]

      [5] Zang H M, Teraoka Y. Catal. Today, 1989,6:155-162

    6. [6]

      [6] Tabuchi M, Ado K. J. Electrochem. Soc., 1998,145:L49-L52

    7. [7]

      [7] Qiu Y C, Xu G L, Yang S H, et al. J. Mater. Chem., 2011, 21:6346-6353

    8. [8]

      [8] Nathan T, Cloke M, Prabaharan S R S. J. Nanomater., 2008, 2008:1-6

    9. [9]

      [9] Liu L, Liang H, Yang H X, et al. Nanotechnology, 2012,22: 015603

    10. [10]

      [10] Yu S, Yoshimura M. Adv. Mater., 2002,14:296-300

    11. [11]

      [11] He W L, Zhang Y C, Zhang X X, et al. J. Cryst. Growth, 2003,252:285-288

    12. [12]

      [12] Lei S J, Tang K B, Fang Z, et al. Mater. Lett., 2006,60:53-56

    13. [13]

      [13] Chen L Y, Xing H, Shen Y M, et al. J. Solid State Chem., 2009,182:1387-1395

    14. [14]

      [14] Chen L Y, Shen Y M, Bai J F, et al. J. Solid State Chem., 2009,182:2298-2306

    15. [15]

      [15] Salavati-Niasari M, Mohandes F, Davar F, et al. Inorgan. Chim. Acta, 2009,362:3691-3697

    16. [16]

      [16] Mohandes F, Davar F, Salavati-Niasari M. J. Magn. Magn. Mater., 2010,322:872-877

    17. [17]

      [17] Liu Y H, Lu Y L, Tsai H L, et al. J. Solid State Chem. 2001,158:315-319

    18. [18]

      [18] Can N, Sözerli Can S E, et al. Polyhedron, 2004,23:1109-1113

    19. [19]

      [19] Chapman M E, Ayyappan P, Foxman B M, et al. Cryst. Growth Des., 2001,1:159-163

    20. [20]

      [20] Zhang F, Zhang X G, Hao L. Mater. Chem. Phys., 2001,126: 853-858

    21. [21]

      [21] Li Z Q, Xie Y, Xiong Y J, et al. New J. Chem., 2003,27: 1518-1521

    22. [22]

      [22] Xiong Y J, Xie Y, Li Z Q, et al. Chem. Eur. J., 2003,9: 1645-1651

    23. [23]

      [23] Schmitt W, Hill J P, Malik S, et al. Angew. Chem. Int. Ed., 2005,44:7048-7053

    24. [24]

      [24] Chen L Y, Bai J F, Wang C Z, et al. Chem. Commun., 2008,11:1581-1583

    25. [25]

      [25] Xu M W, Kong L B, Zhou W J, et al. J. Phys. Chem. C, 2007,111:19141-19147

    26. [26]

      [26] Devaraj S, Munichandraiah N. J. Phys. Chem. C, 2008,112: 4406-4417

    27. [27]

      [27] Devaraj S, Munichandraiah N. J. Electrochem. Soc., 2007, 154:A80-A88

    28. [28]

      [28] Wang Y G, Xia Y Y. J. Electrochem. Soc., 2006,153:A450-A454

  • 加载中
    1. [1]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    2. [2]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    3. [3]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    4. [4]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    5. [5]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    6. [6]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    7. [7]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    8. [8]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    9. [9]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    10. [10]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    11. [11]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    12. [12]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    13. [13]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    14. [14]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    15. [15]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    16. [16]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    17. [17]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    18. [18]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    19. [19]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    20. [20]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

Metrics
  • PDF Downloads(0)
  • Abstract views(172)
  • HTML views(14)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return