Citation: JIANG Ke, ZHOU Kang-Gen, PENG Jia-Le. Predominance Diagrams for NH4+-Mg2+-PO43--H+-H2O System[J]. Chinese Journal of Inorganic Chemistry, ;2012, 28(12): 2605-2611. shu

Predominance Diagrams for NH4+-Mg2+-PO43--H+-H2O System

  • Corresponding author: ZHOU Kang-Gen, 
  • Received Date: 15 March 2012
    Available Online: 1 July 2012

    Fund Project: 国家自然科学基金(No.51174238)资助项目. (No.51174238)

  • The thermodynamics of NH4+-Mg2+-PO43--H+-H2O system was investigated based on the construction of predominance diagrams. The lgCT,Mg-lgCT,P and lgCT,P-pH diagrams were constructed at an arbitrary Mg/P molar ratio with consideration of the ion strength influence(CT,Mg: total concentration of magnesium; CT,P: total concentration of phosphorus; CT,N: total concentration of nitrogen). The thermodynamic stable zones of struvite (MgNH4PO4·6H2O), bobierrite (Mg3(PO4)2·8H2O), newberyite (MgHPO4·3H2O), and magnesium hydroxide (Mg(OH)2) were determined. The results show that struvite and bobierrite are the dominating phases in a wide range of pH value. Struvite and newberyite coexist with solute phase at low pH value and high total concentration of phosphorus while struvite and magnesium hydroxide are more stable at the alkaline condition. The minimum total concentration of nitrogen appears at pH value of 9.08~9.52 while struvite and bobierrite coexist with the solute phase. The predominance diagrams could be used to predict the precipitation-dissolution equilibrium of struvite for ammonia nitrogen removal and recovery from wastewater.
  • 加载中
    1. [1]

      [1] Bonmatí A, Flotats X. Waste Manag., 2003,23(3):261-272

    2. [2]

      [2] Doyle J D, Parsons S A. Water Res., 2002,36(16):3925-3940

    3. [3]

      [3] Jokela J P Y, Kettunen R H, Sormunen K M, et al. Water Res., 2002,36(16):4079-4087

    4. [4]

      [4] Uludag-Demirer S, Demirer G N, Chen S. Process Biochem., 2005,40(12):3667-3674

    5. [5]

      [5] Li X Z, Zhao Q L, Hao X D. Waste Manag., 1999,19(6):409-415

    6. [6]

      [6] Zhang W X, Lau A. J. Chem. Technol. Biotechnol., 2007,82 (6):598-602

    7. [7]

      [7] Zhang C, Chen Y G. Environ. Sci. Technol., 2009,43(16): 6164-6170

    8. [8]

      [8] Taylor A W, Frazier A W, Gurney E L. Trans. Faraday Soc., 1963,59:1580-1584

    9. [9]

      [9] Snoeyink V L, Jenkins D. Water Chemistry. New York: John Wiley and Sons, 1980:306-309

    10. [10]

      [10] Stumm W, Morgan J J. Aquatic Chemistry. New York: Wiley-Interscience, 1970:408-409

    11. [11]

      [11] Ohlinger K N, Young T M, Schroeder E D. Water Res., 1998,32(12):3607-3614

    12. [12]

      [12] Ronteltap M, Maurer M, Gujer W. Water Res., 2007,41(5): 977-984

    13. [13]

      [13] Aage H K, Andersen B L, Biota A, et al. J. Radioanal. Nucl. Chem., 1997,223(1/2)213-215

    14. [14]

      [14] Mijangos F, Kamel M, Lesmes G, et al. React. Funct. Polym., 2004,60:151-161

    15. [15]

      [15] Wang J S, Song Y H, Yuan P, et al. Chemosphere., 2006,65 (7):1182-1187

    16. [16]

      [16] WANG Jian-Sen(王建森), SONG Yong-Hui(宋永会), YUAN Peng(袁鹏), et al. Acta Scientiae Circumstantiae (Huanjing Kexue Xuebao), 2006,26(2):208-213

    17. [17]

      [17] Ali M I, Schneider P A, Hudson N. J. Indian Inst. Sci., 2005,85(3):141-149

    18. [18]

      [18] Miles A, Ellis T G. Water Sci. Technol., 2001,43(11)259-266

    19. [19]

      [19] Babic′-Ivancic′ V, Kontrec J, Brecevic′ L. Urol. Res., 2004, 32(5)350-356

    20. [20]

      [20] Golubev S V, Savenko A V. Experiment in Geosci., 2001, 10:76

    21. [21]

      [21] Dempsy B A. Proceedings of the 52nd Industrial Waste Conference. Purdue Research Foun Ed., Indiana: CRC Press, 1997:369-376

    22. [22]

      [22] JIANG Ke(姜科), ZHOU Kang-Gen(周康根), PENG Jia-Le (彭佳乐). J. Cent. South. Univ. T. (Sci. Technol.) (Zhongnan Daxue Xuebao: Ziran Kexue Ban), 2009,40(5):1178-1182.

    23. [23]

      [23] Babic-Ivancic V, Kontrec J, Brecevic L, et al. Water Res., 2006,40(18):3447-3455

    24. [24]

      [24] Musvoto E V, Wentzel M C, Ekama G. A. Water Res., 2000,34(6):1868-1880

    25. [25]

      [25] Warmadewanthi, Liu J C. Sep. Purif. Technol., 2009,64(3): 368-373

    26. [26]

      [26] Stratful I, Scrimshaw M D, Lester J N. Water Res., 2001,35 (17):4191-4199

    27. [27]

      [27] Diwani G E, Rafie S E, Ibiari N N E, et al. Desalination., 2007,214(1/2/3):200-214

    28. [28]

      [28] Gunay A, Karadag D, Tosun I, et al. J. Hazard. Mater., 2008,156(1/2/3):619-623

    29. [29]

      [29] Pastor L, Mangin D, Barat R, et al. Bioresource Technol., 2008,99(14):6285-6291

    30. [30]

      [30] Booker N A, Priestley A J, Fraser I H. Environ. Technol., 1999,20(7):777-782

  • 加载中
    1. [1]

      Yang ZHOULili YANWenjuan ZHANGPinhua RAO . Thermal regeneration of biogas residue biochar and the ammonia nitrogen adsorption properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1574-1588. doi: 10.11862/CJIC.20250032

    2. [2]

      Mahmoud SayedHan LiChuanbiao Bie . Challenges and prospects of photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(9): 100117-0. doi: 10.1016/j.actphy.2025.100117

    3. [3]

      Chunguang Rong Miaojun Xu Xingde Xiang Song Liu . 化学热力学熵变计算的教学探讨. University Chemistry, 2025, 40(8): 323-329. doi: 10.12461/PKU.DXHX202409146

    4. [4]

      Jianchun Wang Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082

    5. [5]

      Tongqi Ye Yanqing Wang Qi Wang Huaiping Cong Xianghua Kong Yuewen Ye . Reform of Classical Thermodynamics Curriculum from the Perspective of Computational Chemistry. University Chemistry, 2025, 40(7): 387-392. doi: 10.12461/PKU.DXHX202409128

    6. [6]

      Xiaohui Li Ze Zhang Jingyi Cui Juanjuan Yin . Advanced Exploration and Practice of Teaching in the Experimental Course of Chemical Engineering Thermodynamics under the “High Order, Innovative, and Challenging” Framework. University Chemistry, 2024, 39(7): 368-376. doi: 10.3866/PKU.DXHX202311027

    7. [7]

      Ruming Yuan Pingping Wu Laiying Zhang Xiaoming Xu Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057

    8. [8]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    9. [9]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    10. [10]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    11. [11]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    12. [12]

      Jia WangQing QinZhe WangXuhao ZhaoYunfei ChenLiqiang HouShangguo LiuXien Liu . P-Doped Carbon-Supported ZnxPyOz for Efficient Ammonia Electrosynthesis under Ambient Conditions. Acta Physico-Chimica Sinica, 2024, 40(3): 2304044-0. doi: 10.3866/PKU.WHXB202304044

    13. [13]

      Jiajia Wang Sibo Huang Xijing Gao Chaoxun Liu Haibo Zhang . 光催化硝酸根还原产氨的综合实验设计. University Chemistry, 2025, 40(8): 241-248. doi: 10.12461/PKU.DXHX202410050

    14. [14]

      Dongyan Tang Yanqiu Jiang Su'e Hao Yunchen Du Lizhu Zhang Zhigang Liu . 融合优势资源与聚焦多元培养的非化类大学化学一流课程建设. University Chemistry, 2025, 40(6): 71-76. doi: 10.12461/PKU.DXHX202406062

    15. [15]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    16. [16]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    17. [17]

      Lijun Dong Pengcheng Du Guangnong Lu Wei Wang . Exploration and Practice of Independent Design Experiments in Inorganic and Analytical Chemistry: A Case Study of “Preparation and Composition Analysis of Tetraammine Copper(II) Sulfate”. University Chemistry, 2024, 39(4): 361-366. doi: 10.3866/PKU.DXHX202310041

    18. [18]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    19. [19]

      Lubing QinFang SunMeiyin LiHao FanLikai WangQing TangChundong WangZhenghua Tang . Atomically Precise (AgPd)27 Nanoclusters for Nitrate Electroreduction to NH3: Modulating the Metal Core by a Ligand Induced Strategy. Acta Physico-Chimica Sinica, 2025, 41(1): 100008-0. doi: 10.3866/PKU.WHXB202403008

    20. [20]

      Jingkun YuXue YongAng CaoSiyu Lu . Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015-0. doi: 10.3866/PKU.WHXB202307015

Metrics
  • PDF Downloads(0)
  • Abstract views(526)
  • HTML views(48)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return