Citation: ZHANG Jing-Xian, YI Guan-Gui, LIU Ying-Liang, WU Yong-Jian, SUN Li-Xian. KOH-Activated Carbon Xerogels for Hydrogen Storage[J]. Chinese Journal of Inorganic Chemistry, ;2012, 28(12): 2565-2572. shu

KOH-Activated Carbon Xerogels for Hydrogen Storage

  • Corresponding author: LIU Ying-Liang, 
  • Received Date: 28 November 2011
    Available Online: 2 June 2012

    Fund Project: 国家-广东联合基金(No.U0734005) (No.U0734005)中央高校基本科研业务费专项资金(No.21610102) (No.21610102)国家自然科学基金(No.21031001) (No.21031001)广东省高等学校科技创新重点项目(No.cxzd1014)资助项目. (No.cxzd1014)

  • Organic xerogel was rapidly prepared via a lysine-catalyzed gelation process with resorcinol and formaldehyde as the precursors. After carbonization and a subsequent activation with KOH, carbon xerogels with high microporosity and high-specific-surface area could be obtained. The hydrogen storage properties of the porous carbon xerogels were studied. The relationship of the maximum hydrogen storage capacity with specific surfacearea, micropore volume and pore size distribution was investigated. The results show that moderately KOH-activated carbon xerogel (ACX-5) with high surface area of 2 204 m2·g-1 and large total-pore volume of 1.09 cm3·g-1 exhibits the largest hydrogen storage capacity of 4.3wt% at 77 K and under 1.1 MPa hydrogen pressure.
  • 加载中
    1. [1]

      [1] Schlapbach L, Züttel A. Nature, 2001,414:353-358

    2. [2]

      [2] Yang Z, Xia Y, Mokaya R. J. Am. Chem. Soc., 2007,129: 1673-1679

    3. [3]

      [3] Pacula A, Mokaya R. J. Phys. Chem. C, 2008,112(7):2764-2769

    4. [4]

      [4] Xu W C, Takahashi K, Matsuo Y, et al. Int. J. Hydrogen Energy, 2007,32(13):2504-2512

    5. [5]

      [5] Kabbour H, Baumann T F, Satcher Jr J H, et al. Chem. Mater., 2006,18:6085-6087

    6. [6]

      [6] Tian H Y, Buckley C E, Wang S B, et al. Carbon, 2009,47: 2112-2142

    7. [7]

      [7] Zubizarreta L, Menéndez J A, Job N, et al. Carbon, 2010, 48:2722-2733

    8. [8]

      [8] Tian H Y, Buckley C E, Paskevicius M, et al. Int. J. Hydrogen Energy, 2011,36:10855-10860

    9. [9]

      [9] Pekala R W. J. Mater. Sci., 1989,24:3221-3227

    10. [10]

      [10] Pekala R W, Alviso C T, Kong F M, et al. J. Non-Cryst. Solids, 1992,145:90-98

    11. [11]

      [11] Pekala R W. US Patent, 873218. 1989-04.

    12. [12]

      [12] Pekala R W, Schaefer D W. Macromolecules, 1993,26:5887-5893

    13. [13]

      [13] Mulik S, Sotiriou-Leventis C, Leventis N. Chem. Mater., 2007, 19:6138-6144

    14. [14]

      [14] Hao G P, Li W C, Qian D, et al. Adv. Mater., 2010,22:853-857

    15. [15]

      [15] Brunauer S, Emmett P H, Teller E. J. Am. Chem. Soc., 1938,60:309-319

    16. [16]

      [16] Figueroa-Torres M Z, Robau-Sanchez A, de la Torre-Saenz L, et al. Micropor. Mesopor. Mater., 2007,98:89-93

    17. [17]

      [17] Lozano-Castello D, Calo J M, Cazorla-Amoros D, et al. Carbon, 2007,45:2529-2536.

    18. [18]

      [18] Ehrburger P, Addoun A, Addoun F, et al. Fuel, 1986,65: 1447-1449

    19. [19]

      [19] Brunauer S, Emmett P H, Teller E. J. Am. Chem. Soc, 1938, 60:309-319

    20. [20]

      [20] Gregg S J, Sing K S W. Adsorption, Surface Area and Porosity. 2nd Ed, London: Academic Press, 1982:56

    21. [21]

      [21] Wang H L, Gao Q M, Hu J. J. Am. Chem. Soc., 2009,131: 7016-7022

    22. [22]

      [22] Hiroki A, Tomokazu T, Ikumi T. Int. J. Hydrogen Energy, 2011,36:580-585

    23. [23]

      [23] Armandi M, Bonelli B, Geobaldo F, et al. Micropor Mesopor Mater., 2010,132:414-420

    24. [24]

      [24] Zubizarreta L, Arenillas A, Pis J. J. Int. J. Hydrogen Energy, 2009,34:4575-4581

    25. [25]

      [25] de la Casa-Lillo MA, Lamari-Darkrim F, Cazorla-Amoros D, et al. J. Phys. Chem. B, 2002,106:10930-10934

    26. [26]

      [26] Gadiou R, Texier-Mandoki N, Piquero T, et al. Adsorption, 2005,11:823-827

    27. [27]

      [27] Rezpka M, Lamp P, de la Casa-Lillo M A. J. Phys. Chem. B, 1998,102:10894-10898

    28. [28]

      [28] Zubizarreta L, Gomez E I, Arenillas A, et al. Adsorption, 2008,14:557-566

    29. [29]

      [29] Jordá-Beneyto M, Suárez-Garía F, Lozano-Castelló D, et al. Carbon, 2007,45:293-303

  • 加载中
    1. [1]

      Yupeng TANGHaiying YANGFan JINNan LI . Hydrogen storage properties of C6S6Li6: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1827-1839. doi: 10.11862/CJIC.20240460

    2. [2]

      Ran YuChen HuRuili GuoRuonan LiuLixing XiaCenyu YangJianglan Shui . Catalytic Effect of H3PW12O40 on Hydrogen Storage of MgH2. Acta Physico-Chimica Sinica, 2025, 41(1): 100001-0. doi: 10.3866/PKU.WHXB202308032

    3. [3]

      Qiqi LiSu ZhangYuting JiangLinna ZhuNannan GuoJing ZhangYutong LiTong WeiZhuangjun Fan . Preparation of High Density Activated Carbon by Mechanical Compression of Precursors for Compact Capacitive Energy Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-0. doi: 10.3866/PKU.WHXB202406009

    4. [4]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    5. [5]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    6. [6]

      Chengpeng Liu Yinxia Fu . Design and Practice of Ideological and Political Education for the Public Elective Course “Life Chemistry Experiment” in Universities. University Chemistry, 2024, 39(10): 242-248. doi: 10.12461/PKU.DXHX202404064

    7. [7]

      Fa Wang Yu Chen Hui Chao . Ruthenium(II) Complexes as Photoactivated Chemo-Prodrugs for Hypoxic Tumor Therapy. University Chemistry, 2025, 40(7): 200-212. doi: 10.12461/PKU.DXHX202410024

    8. [8]

      Xue-Peng Zhang Yuchi Long Yushu Pan Jiding Wang Baoyu Bai Rui Ding . 定量构效关系方法学习探索:以钴卟啉活化氧气为例. University Chemistry, 2025, 40(8): 345-359. doi: 10.12461/PKU.DXHX202410107

    9. [9]

      Tao XuWei SunTianci KongJie ZhouYitai Qian . Stable Graphite Interface for Potassium Ion Battery Achieving Ultralong Cycling Performance. Acta Physico-Chimica Sinica, 2024, 40(2): 2303021-0. doi: 10.3866/PKU.WHXB202303021

    10. [10]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    11. [11]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    12. [12]

      Xinran Zhang Siqi Liu Yichi Chen Qingli Zou Qinghong Xu Yaqin Huang . From Protein to Energy Storage Materials: Edible Gelatin Jelly Electrolyte. University Chemistry, 2025, 40(7): 255-266. doi: 10.12461/PKU.DXHX202408104

    13. [13]

      Xueyu LinRuiqi WangWujie DongFuqiang Huang . Rational Design of Bimetallic Oxide Anodes for Superior Li+ Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-0. doi: 10.3866/PKU.WHXB202311005

    14. [14]

      Yan XinYunnian GeZezhong LiQiaobao ZhangHuajun Tian . Research Progress on Modification Strategies of Organic Electrode Materials for Energy Storage Batteries. Acta Physico-Chimica Sinica, 2024, 40(2): 2303060-0. doi: 10.3866/PKU.WHXB202303060

    15. [15]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    16. [16]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    17. [17]

      Xue XiaoJiachun LiXiangtong MengJieshan Qiu . Sulfur-Doped Carbon-Coated Fe0.95S1.05 Nanospheres as Anodes for High-Performance Sodium Storage. Acta Physico-Chimica Sinica, 2024, 40(6): 2307006-0. doi: 10.3866/PKU.WHXB202307006

    18. [18]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    19. [19]

      Qianqian ZHULihui XUHong PANChengjian YAOHong ZHAONan MAXiaolin SHIZihan SHENWeijun ZHANGZhongjian WANG . Waste cotton fabric-ased porous carbon materials: Preparation and wave-absorbing properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1555-1564. doi: 10.11862/CJIC.20250040

    20. [20]

      Yang ZHOULili YANWenjuan ZHANGPinhua RAO . Thermal regeneration of biogas residue biochar and the ammonia nitrogen adsorption properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1574-1588. doi: 10.11862/CJIC.20250032

Metrics
  • PDF Downloads(0)
  • Abstract views(604)
  • HTML views(62)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return