Citation: ZHANG Jing-Xian, YI Guan-Gui, LIU Ying-Liang, WU Yong-Jian, SUN Li-Xian. KOH-Activated Carbon Xerogels for Hydrogen Storage[J]. Chinese Journal of Inorganic Chemistry, ;2012, 28(12): 2565-2572. shu

KOH-Activated Carbon Xerogels for Hydrogen Storage

  • Corresponding author: LIU Ying-Liang, 
  • Received Date: 28 November 2011
    Available Online: 2 June 2012

    Fund Project: 国家-广东联合基金(No.U0734005) (No.U0734005)中央高校基本科研业务费专项资金(No.21610102) (No.21610102)国家自然科学基金(No.21031001) (No.21031001)广东省高等学校科技创新重点项目(No.cxzd1014)资助项目. (No.cxzd1014)

  • Organic xerogel was rapidly prepared via a lysine-catalyzed gelation process with resorcinol and formaldehyde as the precursors. After carbonization and a subsequent activation with KOH, carbon xerogels with high microporosity and high-specific-surface area could be obtained. The hydrogen storage properties of the porous carbon xerogels were studied. The relationship of the maximum hydrogen storage capacity with specific surfacearea, micropore volume and pore size distribution was investigated. The results show that moderately KOH-activated carbon xerogel (ACX-5) with high surface area of 2 204 m2·g-1 and large total-pore volume of 1.09 cm3·g-1 exhibits the largest hydrogen storage capacity of 4.3wt% at 77 K and under 1.1 MPa hydrogen pressure.
  • 加载中
    1. [1]

      [1] Schlapbach L, Züttel A. Nature, 2001,414:353-358

    2. [2]

      [2] Yang Z, Xia Y, Mokaya R. J. Am. Chem. Soc., 2007,129: 1673-1679

    3. [3]

      [3] Pacula A, Mokaya R. J. Phys. Chem. C, 2008,112(7):2764-2769

    4. [4]

      [4] Xu W C, Takahashi K, Matsuo Y, et al. Int. J. Hydrogen Energy, 2007,32(13):2504-2512

    5. [5]

      [5] Kabbour H, Baumann T F, Satcher Jr J H, et al. Chem. Mater., 2006,18:6085-6087

    6. [6]

      [6] Tian H Y, Buckley C E, Wang S B, et al. Carbon, 2009,47: 2112-2142

    7. [7]

      [7] Zubizarreta L, Menéndez J A, Job N, et al. Carbon, 2010, 48:2722-2733

    8. [8]

      [8] Tian H Y, Buckley C E, Paskevicius M, et al. Int. J. Hydrogen Energy, 2011,36:10855-10860

    9. [9]

      [9] Pekala R W. J. Mater. Sci., 1989,24:3221-3227

    10. [10]

      [10] Pekala R W, Alviso C T, Kong F M, et al. J. Non-Cryst. Solids, 1992,145:90-98

    11. [11]

      [11] Pekala R W. US Patent, 873218. 1989-04.

    12. [12]

      [12] Pekala R W, Schaefer D W. Macromolecules, 1993,26:5887-5893

    13. [13]

      [13] Mulik S, Sotiriou-Leventis C, Leventis N. Chem. Mater., 2007, 19:6138-6144

    14. [14]

      [14] Hao G P, Li W C, Qian D, et al. Adv. Mater., 2010,22:853-857

    15. [15]

      [15] Brunauer S, Emmett P H, Teller E. J. Am. Chem. Soc., 1938,60:309-319

    16. [16]

      [16] Figueroa-Torres M Z, Robau-Sanchez A, de la Torre-Saenz L, et al. Micropor. Mesopor. Mater., 2007,98:89-93

    17. [17]

      [17] Lozano-Castello D, Calo J M, Cazorla-Amoros D, et al. Carbon, 2007,45:2529-2536.

    18. [18]

      [18] Ehrburger P, Addoun A, Addoun F, et al. Fuel, 1986,65: 1447-1449

    19. [19]

      [19] Brunauer S, Emmett P H, Teller E. J. Am. Chem. Soc, 1938, 60:309-319

    20. [20]

      [20] Gregg S J, Sing K S W. Adsorption, Surface Area and Porosity. 2nd Ed, London: Academic Press, 1982:56

    21. [21]

      [21] Wang H L, Gao Q M, Hu J. J. Am. Chem. Soc., 2009,131: 7016-7022

    22. [22]

      [22] Hiroki A, Tomokazu T, Ikumi T. Int. J. Hydrogen Energy, 2011,36:580-585

    23. [23]

      [23] Armandi M, Bonelli B, Geobaldo F, et al. Micropor Mesopor Mater., 2010,132:414-420

    24. [24]

      [24] Zubizarreta L, Arenillas A, Pis J. J. Int. J. Hydrogen Energy, 2009,34:4575-4581

    25. [25]

      [25] de la Casa-Lillo MA, Lamari-Darkrim F, Cazorla-Amoros D, et al. J. Phys. Chem. B, 2002,106:10930-10934

    26. [26]

      [26] Gadiou R, Texier-Mandoki N, Piquero T, et al. Adsorption, 2005,11:823-827

    27. [27]

      [27] Rezpka M, Lamp P, de la Casa-Lillo M A. J. Phys. Chem. B, 1998,102:10894-10898

    28. [28]

      [28] Zubizarreta L, Gomez E I, Arenillas A, et al. Adsorption, 2008,14:557-566

    29. [29]

      [29] Jordá-Beneyto M, Suárez-Garía F, Lozano-Castelló D, et al. Carbon, 2007,45:293-303

  • 加载中
    1. [1]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    2. [2]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    3. [3]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    4. [4]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    5. [5]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    6. [6]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    7. [7]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    8. [8]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    9. [9]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    10. [10]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    11. [11]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

Metrics
  • PDF Downloads(0)
  • Abstract views(401)
  • HTML views(27)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return