Citation: YE Jian, ZHANG Hai-Yan, CHEN Yi-Ming, HU Li, RAN Qi-Yan, DU Lei. Preparation of Graphene by Ball Milling-Assisted Oxidization-Reduction Method[J]. Chinese Journal of Inorganic Chemistry, ;2012, 28(12): 2523-2529. shu

Preparation of Graphene by Ball Milling-Assisted Oxidization-Reduction Method

  • Corresponding author: ZHANG Hai-Yan, 
  • Received Date: 9 May 2012
    Available Online: 11 June 2012

    Fund Project: 国家自然科学基金(No.20971027)资助项目. (No.20971027)

  • Graphite oxide (GO) was prepared from natural graphite by a modified Hummers method. GO was firstly ball milled for 10 h and then exfoliated into graphene oxide by ultrasonication. Finally, graphene was prepared by magnetic mixing reflux method using hydrazine monohydrate as reductant. Graphene is characterized by SEM, AFM, XRD, Raman, FTIR, TEM measurements. The surface morphology and structure of graphene sheets which are prepared by low-energy ball milling assisted oxidization-reduction method and oxidization-reduction method without ball milling are compared and analyzed. The results show that ball milling contributes to the thinning and exfoliation of GO. Otherwise, low-energy ball milling can promote the reduction degree of GO, shorten the reflux reaction time and improve the efficiency of graphene preparation.
  • 加载中
    1. [1]

      [1] Soldano C, Mahmood A, Dujardin E. Carbon, 2010,48(8):2127-2150

    2. [2]

      [2] Blake P, Brimicombe P D, Nair R R, et al. J. Nano Lett., 2008,8:1704-1708

    3. [3]

      [3] Prasher R. Science, 2010,328(5975):185-186.

    4. [4]

      [4] Novoselov K S, Geim A K, Morozov S V, et al. Science, 2004,306:666-669

    5. [5]

      [5] Stankovich S, Dikin D A, Piner R D, et al. Carbon, 2007,45 (7):1558-1565

    6. [6]

      [6] Stoller M D, Park S, Zhu Y W, et al. Nano Lett., 2008,8(10): 3498-3502

    7. [7]

      [7] Kim K S, Zhao Y, Jang H, et al. Nature, 2009,475:706-710

    8. [8]

      [8] Liu W, Chung C H, Miao C Q, et al. Thin Solid Films, 2010, 518:S128-S132

    9. [9]

      [9] Park H J, Meyer J, Roth S, et al. Carbon, 2010,48:1088-1094

    10. [10]

      [10] Reina A, Thiele S, Kong J, et al. Nano Res., 2009,2:509-516

    11. [11]

      [11] Cai W W, Zhu Y W, Ruoff R S, et al. Appl. Phys. Lett., 2009,95:123115

    12. [12]

      [12] Reina A, Jia X T, Kong J, et al. Nano Lett., 2009,9(1):30-35

    13. [13]

      [13] Kosynkin D V, Higginbotham A L, Sinitskii A, et al. Carbon, 2009,46:3242-3246

    14. [14]

      [14] Subrahmanyam K S, Panchakarla L S, Govindaraj A, et al. J. Phys. Chem., 2009,113(11):4257-4259

    15. [15]

      [15] LV Yan(吕岩), WANG Zhi-Yong(王志永), ZHANG Hao(张 浩), et al. J. Inorg. Mater.(Wuji Cailiao Xuebao), 2010,25 (7):725-728

    16. [16]

      [16] Wu Z S, Ren W C, Gao L B, et al. ACS Nano, 2009,3(2): 411-417

    17. [17]

      [17] Berger C, Song Z M, Li X B, et al. Science, 2006,312(5777): 1191-1196

    18. [18]

      [18] Berger C, Song Z, Li T, et al. J. Phys. Chem., 2004,108(52): 19912-19916

    19. [19]

      [19] Sutter P W, Flege J I, Sutter E A, et al. Nat. Mater., 2008,7 (5):406-411

    20. [20]

      [20] McAllister M J, Li J L, Adamson D H, et al. Chem. Mater., 2007,19:4396-4404

    21. [21]

      [21] Schniepp H C, Li J L, McAllister M J, et al. J. Phys. Chem. B, 2006,110:8535-8539

    22. [22]

      [22] Lü W, Tang D M, He Y B, et al. ACS Nano, 2009,3(11): 3730-3736

    23. [23]

      [23] Ye J, Zhang H Y, Hu L, et al. J. Power Source, 2012,212: 105-110

    24. [24]

      [24] Zhu Y W, Murali S, Stoller M D, et al. Carbon, 2010,48(7): 2118-2122

    25. [25]

      [25] ZOU Zheng-Guang(邹正光), YU Hui-Jiang(俞惠江), LONG Fei(龙飞), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2011,27(9):1753-1757

    26. [26]

      [26] Chen Y, Zhang X, Zhang D C, et al. Carbon, 2011,49:573-580

    27. [27]

      [27] Liu C G, Yu Z N, Neff D, et al. Nano Lett., 2010,10(12): 4863-4868

    28. [28]

      [28] Hummers W S, Offeman R E. J. Am. Chem. Soc., 1958,80 (6):1339-1339

    29. [29]

      [29] Li L H, Chen Y, Behan G, et al. J. Mater. Chem., 2011,21: 11862

    30. [30]

      [30] Geim A K, Novoselov K S. Nat. Mater., 2007,6:183-191

    31. [31]

      [31] Tuinstra F, Koenig J L. J. Chem. Phys., 1970,53(3):1126-1130

    32. [32]

      [32] Ferrari A C, Meyer, J C, Novoselov K S, et al. Phys. Rev. Lett., 2006,97:187401

    33. [33]

      [33] Kudin K N, Ozbas B, Schniepp H C, et al. Nano Lett., 2008,8(1):36-41

    34. [34]

      [34] Kaniyoor A, Baby T T, Ramaprabhu S. J. Mater. Chem., 2010,20:8467-8469

    35. [35]

      [35] Jeong H K, Colakerol L, Jin M H, et al. J. Chem. Phys. Lett., 2008,460:499-502

  • 加载中
    1. [1]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    2. [2]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    3. [3]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    4. [4]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    5. [5]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    6. [6]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    7. [7]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    8. [8]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    9. [9]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    10. [10]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    11. [11]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    12. [12]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    13. [13]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    14. [14]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    15. [15]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    16. [16]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    17. [17]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

Metrics
  • PDF Downloads(0)
  • Abstract views(423)
  • HTML views(50)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return