Citation:
YE Jian, ZHANG Hai-Yan, CHEN Yi-Ming, HU Li, RAN Qi-Yan, DU Lei. Preparation of Graphene by Ball Milling-Assisted Oxidization-Reduction Method[J]. Chinese Journal of Inorganic Chemistry,
;2012, 28(12): 2523-2529.
-
Graphite oxide (GO) was prepared from natural graphite by a modified Hummers method. GO was firstly ball milled for 10 h and then exfoliated into graphene oxide by ultrasonication. Finally, graphene was prepared by magnetic mixing reflux method using hydrazine monohydrate as reductant. Graphene is characterized by SEM, AFM, XRD, Raman, FTIR, TEM measurements. The surface morphology and structure of graphene sheets which are prepared by low-energy ball milling assisted oxidization-reduction method and oxidization-reduction method without ball milling are compared and analyzed. The results show that ball milling contributes to the thinning and exfoliation of GO. Otherwise, low-energy ball milling can promote the reduction degree of GO, shorten the reflux reaction time and improve the efficiency of graphene preparation.
-
-
-
[1]
[1] Soldano C, Mahmood A, Dujardin E. Carbon, 2010,48(8):2127-2150
-
[2]
[2] Blake P, Brimicombe P D, Nair R R, et al. J. Nano Lett., 2008,8:1704-1708
-
[3]
[3] Prasher R. Science, 2010,328(5975):185-186.
-
[4]
[4] Novoselov K S, Geim A K, Morozov S V, et al. Science, 2004,306:666-669
-
[5]
[5] Stankovich S, Dikin D A, Piner R D, et al. Carbon, 2007,45 (7):1558-1565
-
[6]
[6] Stoller M D, Park S, Zhu Y W, et al. Nano Lett., 2008,8(10): 3498-3502
-
[7]
[7] Kim K S, Zhao Y, Jang H, et al. Nature, 2009,475:706-710
-
[8]
[8] Liu W, Chung C H, Miao C Q, et al. Thin Solid Films, 2010, 518:S128-S132
-
[9]
[9] Park H J, Meyer J, Roth S, et al. Carbon, 2010,48:1088-1094
-
[10]
[10] Reina A, Thiele S, Kong J, et al. Nano Res., 2009,2:509-516
-
[11]
[11] Cai W W, Zhu Y W, Ruoff R S, et al. Appl. Phys. Lett., 2009,95:123115
-
[12]
[12] Reina A, Jia X T, Kong J, et al. Nano Lett., 2009,9(1):30-35
-
[13]
[13] Kosynkin D V, Higginbotham A L, Sinitskii A, et al. Carbon, 2009,46:3242-3246
-
[14]
[14] Subrahmanyam K S, Panchakarla L S, Govindaraj A, et al. J. Phys. Chem., 2009,113(11):4257-4259
-
[15]
[15] LV Yan(吕岩), WANG Zhi-Yong(王志永), ZHANG Hao(张 浩), et al. J. Inorg. Mater.(Wuji Cailiao Xuebao), 2010,25 (7):725-728
-
[16]
[16] Wu Z S, Ren W C, Gao L B, et al. ACS Nano, 2009,3(2): 411-417
-
[17]
[17] Berger C, Song Z M, Li X B, et al. Science, 2006,312(5777): 1191-1196
-
[18]
[18] Berger C, Song Z, Li T, et al. J. Phys. Chem., 2004,108(52): 19912-19916
-
[19]
[19] Sutter P W, Flege J I, Sutter E A, et al. Nat. Mater., 2008,7 (5):406-411
-
[20]
[20] McAllister M J, Li J L, Adamson D H, et al. Chem. Mater., 2007,19:4396-4404
-
[21]
[21] Schniepp H C, Li J L, McAllister M J, et al. J. Phys. Chem. B, 2006,110:8535-8539
-
[22]
[22] Lü W, Tang D M, He Y B, et al. ACS Nano, 2009,3(11): 3730-3736
-
[23]
[23] Ye J, Zhang H Y, Hu L, et al. J. Power Source, 2012,212: 105-110
-
[24]
[24] Zhu Y W, Murali S, Stoller M D, et al. Carbon, 2010,48(7): 2118-2122
-
[25]
[25] ZOU Zheng-Guang(邹正光), YU Hui-Jiang(俞惠江), LONG Fei(龙飞), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2011,27(9):1753-1757
-
[26]
[26] Chen Y, Zhang X, Zhang D C, et al. Carbon, 2011,49:573-580
-
[27]
[27] Liu C G, Yu Z N, Neff D, et al. Nano Lett., 2010,10(12): 4863-4868
-
[28]
[28] Hummers W S, Offeman R E. J. Am. Chem. Soc., 1958,80 (6):1339-1339
-
[29]
[29] Li L H, Chen Y, Behan G, et al. J. Mater. Chem., 2011,21: 11862
-
[30]
[30] Geim A K, Novoselov K S. Nat. Mater., 2007,6:183-191
-
[31]
[31] Tuinstra F, Koenig J L. J. Chem. Phys., 1970,53(3):1126-1130
-
[32]
[32] Ferrari A C, Meyer, J C, Novoselov K S, et al. Phys. Rev. Lett., 2006,97:187401
-
[33]
[33] Kudin K N, Ozbas B, Schniepp H C, et al. Nano Lett., 2008,8(1):36-41
-
[34]
[34] Kaniyoor A, Baby T T, Ramaprabhu S. J. Mater. Chem., 2010,20:8467-8469
-
[35]
[35] Jeong H K, Colakerol L, Jin M H, et al. J. Chem. Phys. Lett., 2008,460:499-502
-
[1]
-
-
-
[1]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[2]
Zeyu XU , Anlei DANG , Bihua DENG , Xiaoxin ZUO , Yu LU , Ping YANG , Wenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099
-
[3]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[4]
Anbang Du , Yuanfan Wang , Zhihong Wei , Dongxu Zhang , Li Li , Weiqing Yang , Qianlu Sun , Lili Zhao , Weigao Xu , Yuxi Tian . Photothermal Microscopy of Graphene Flakes with Different Thicknesses. Acta Physico-Chimica Sinica, 2024, 40(5): 2304027-0. doi: 10.3866/PKU.WHXB202304027
-
[5]
Chaolin Mi , Yuying Qin , Xinli Huang , Yijie Luo , Zhiwei Zhang , Chengxiang Wang , Yuanchang Shi , Longwei Yin , Rutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011
-
[6]
Tao Xu , Wei Sun , Tianci Kong , Jie Zhou , Yitai Qian . Stable Graphite Interface for Potassium Ion Battery Achieving Ultralong Cycling Performance. Acta Physico-Chimica Sinica, 2024, 40(2): 2303021-0. doi: 10.3866/PKU.WHXB202303021
-
[7]
Zhangshu Wang , Xin Zhang , Jixin Han , Xuebing Fang , Xiufeng Zhao , Zeyu Gu , Jinjun Deng . Exploration and Design of Experimental Teaching on Ultrasonic-Enhanced Synergistic Treatment of Ternary Composite Flooding Produced Water. University Chemistry, 2024, 39(5): 116-124. doi: 10.3866/PKU.DXHX202310056
-
[8]
Yunting Shang , Yue Dai , Jianxin Zhang , Nan Zhu , Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050
-
[9]
Yue Zhang , Bao Li , Lixin Wu . GO-Assisted Supramolecular Framework Membrane for High-Performance Separation of Nanosized Oil-in-Water Emulsions. Acta Physico-Chimica Sinica, 2024, 40(5): 2305038-0. doi: 10.3866/PKU.WHXB202305038
-
[10]
Zhenlin Zhou , Siyuan Chen , Yi Liu , Chengguo Hu , Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049
-
[11]
Tianqi Bai , Kun Huang , Fachen Liu , Ruochen Shi , Wencai Ren , Songfeng Pei , Peng Gao , Zhongfan Liu . Nanoscale Mechanism of Microstructure-Dependent Thermal Diffusivity in Thick Graphene Sheets. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-0. doi: 10.3866/PKU.WHXB202404024
-
[12]
Jiahao Lu , Xin Ming , Yingjun Liu , Yuanyuan Hao , Peijuan Zhang , Songhan Shi , Yi Mao , Yue Yu , Shengying Cai , Zhen Xu , Chao Gao . High-Precision and Reliable Thermal Conductivity Measurement for Graphene Films Based on an Improved Steady-State Electric Heating Method. Acta Physico-Chimica Sinica, 2025, 41(5): 100045-0. doi: 10.1016/j.actphy.2025.100045
-
[13]
Yan LIU , Jiaxin GUO , Song YANG , Shixian XU , Yanyan YANG , Zhongliang YU , Xiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043
-
[14]
Lisha LEI , Wei YONG , Yiting CHENG , Yibo WANG , Wenchao HUANG , Junhuan ZHAO , Zhongjie ZHAI , Yangbin DING . Application of regenerated cellulose and reduced graphene oxide film in synergistic power generation from moisture electricity generation and Mg-air batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1151-1161. doi: 10.11862/CJIC.20240202
-
[15]
Hao BAI , Weizhi JI , Jinyan CHEN , Hongji LI , Mingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001
-
[16]
Shiqian WEI , Xinyu TIAN , Hong LIU , Maoxia CHEN , Fan TANG , Qiang FAN , Weifeng FAN , Yu HU . Oxygen reduction reaction/oxygen evolution reaction catalytic performances of different active sites on nitrogen-doped graphene loaded with iron single atoms. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1776-1788. doi: 10.11862/CJIC.20250102
-
[17]
Jie XIE , Hongnan XU , Jianfeng LIAO , Ruoyu CHEN , Lin SUN , Zhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216
-
[18]
Tian TIAN , Meng ZHOU , Jiale WEI , Yize LIU , Yifan MO , Yuhan YE , Wenzhi JIA , Bin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298
-
[19]
Peiyu Zhang , Aixin Song , Jingcheng Hao , Jiwei Cui . 高频超声法制备聚多巴胺薄膜综合实验. University Chemistry, 2025, 40(6): 210-214. doi: 10.12461/PKU.DXHX202407081
-
[20]
Rui Gao , Ying Zhou , Yifan Hu , Siyuan Chen , Shouhong Xu , Qianfu Luo , Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(694)
- HTML views(99)