Citation: MAO Jun-Xian, JIANG Jiao, WANG Hua-Kai, YANG Li-Jun, WANG Yang-Nian, GENG Jiao, WANG Xi-Zhang, HU Zheng. Immobilizing Ruthenium Nanoparticles onto Nitrogen-Doped Carbon Nanotubes for Aerobic Oxidation of Benzyl Alcohol under Ambient Pressure[J]. Chinese Journal of Inorganic Chemistry, ;2012, 28(12): 2508-2512. shu

Immobilizing Ruthenium Nanoparticles onto Nitrogen-Doped Carbon Nanotubes for Aerobic Oxidation of Benzyl Alcohol under Ambient Pressure

  • Corresponding author: GENG Jiao,  WANG Xi-Zhang, 
  • Received Date: 8 May 2012
    Available Online: 1 July 2012

    Fund Project: 国家自然科学基金(No.21173114,21173115,20833002) (No.21173114,21173115,20833002) “973”项目(No.2007CB936302) (No.2007CB936302)江苏省自然科学基金(No.BK2010304)资助项目. (No.BK2010304)

  • Ruthenium nanoparticles were conveniently immobilized on nitrogen-doped carbon nanotubes (NCNTs) via microwave-assisted ethylene glycol reduction. Ru/NCNTs catalysts presented the excellent catalytic performance and cyclical stability for the aerobic oxidation of benzyl alcohol under atmospheric condition, compared with the catalysts supported on carbon nanotubes (CNTs) and activated carbon (AC). The conversion of benzyl alcohol could rearch 93% and the selectivity of benzaldehyde was higher than 99% at 90 ℃. The doped nitrogen atoms embedded in the NCNTs wall are responsible for the improved catalytic performance.
  • 加载中
    1. [1]

      [1] Tamas M, Alfons B. Chem. Rev., 2004,104:3037-3058

    2. [2]

      [2] Muzart J. Chem. Rev., 1992,92:113-140

    3. [3]

      [3] Uchiyama M, Kimura Y, Ohta A. Tetrahedron Lett., 2000,41: 10013-10017

    4. [4]

      [4] Berkowitz L M, Rylander P N. J. Am. Chem. Soc., 1959,80: 6682-668

    5. [5]

      [5] Menger F M, Lee C. Tetrahedron Lett., 1981,22:1655-1656

    6. [6]

      [6] An G, Lim M, Rhee H, et al. Synlett., 2007,1:95-98

    7. [7]

      [7] Korovchenko P, Donze C, Gallezot P, et al. Catal. Today, 2007,121:13-21

    8. [8]

      [8] Yun H N, Shigeru I, Michio M, et al. Chem. Commun., 2008,27:3181-3183

    9. [9]

      [9] Onal Y, Schimpf S, Claus P. J. Catal., 2004,223:122-133

    10. [10]

      [10] Yamaguchi Y, Mizuno N. Angew. Chem. Int. Ed., 2002,41: 4538-4542

    11. [11]

      [11] Enache D I, Edwards J K, Hutchings G J, et al. Science, 2006,311:362-365

    12. [12]

      [12] Iijima S. Nature, 1991,354:56-58

    13. [13]

      [13] Deng W P, Liu M, Tan X S, et al. J. Catal., 2010,271:22-32

    14. [14]

      [14] Rodrigues E G, Carabineiro S, Chen X, et al. J. Catal., 2012,285:83-91

    15. [15]

      [15] Xiong H F, Moyo M, Coville N J, et al. J. Catal., 2011,278:26-40

    16. [16]

      [16] Julien A, Kambiz C, Cuong P H, et al. Catal. Today, 2008, 138:62-68

    17. [17]

      [17] Yue B, Ma Y W,Hu Z, et al. J. Mater. Chem., 2008,18: 1747-1750

    18. [18]

      [18] Jiang S J, Ma Y W, Hu Z, et al. Adv. Mater., 2009,21:4953-4956

    19. [19]

      [19] Wang X Z,Xue H, Hu Z, et al. Nanotechnol., 2011,22: 395401-395407

    20. [20]

      [20] Yang Y, Hu Z, Wang X Z, et al. Nanotechnol., 2003,14: 733-737

    21. [21]

      [21] Chen H, Yang Y, Hu Z, et al. J. Phys. Chem. B, 2006,110: 16422-16427

    22. [22]

      [22] XUE Hua(薛华), YANG Li-Jun(杨立军), WANG Xi-Zhang (王喜章), et al. Chinese. J. Inorg. Chem.(Wuji Huaxue Xuebao), 2011,27(12):2459-2463

    23. [23]

      [23] Zamudio A, Elias A L, Terrones M, et al. Small, 2006,2: 346-350

    24. [24]

      [24] Lepro X, Terres E, Terrones M, et al. Chem. Phys. Lett., 2008,463:124-129

    25. [25]

      [25] Fu X, Yu H, Peng F, et al. Appl. Catal. A: General, 2007, 321:190-197

    26. [26]

      [26] GAO Wei-Jie(高伟洁), GUO Shu-Jing(郭淑静), ZHANG Hong-Bo(张洪波), et al. Chin. J. Catal. (Cuihua Xuebao) 2011,32:1418-1423

    27. [27]

      [27] Yang L J, Jiang S J, Zhao Y, et al. Angew. Chem. Int. Ed., 2011,50:7132-7135

  • 加载中
    1. [1]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    2. [2]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    3. [3]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    4. [4]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    5. [5]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    6. [6]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    7. [7]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    8. [8]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    9. [9]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    10. [10]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    11. [11]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    12. [12]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    13. [13]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    14. [14]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    15. [15]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    16. [16]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    17. [17]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    18. [18]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    19. [19]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    20. [20]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

Metrics
  • PDF Downloads(0)
  • Abstract views(281)
  • HTML views(48)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return