Citation: LI Han-xu, MEI Le, JI Ming-jun, XIONG Jin-yu, LI Jin-zhi. Influencing factors on fly ash adhesion features in Shell lignite gasifier[J]. Journal of Fuel Chemistry and Technology, ;2015, 43(12): 1409-1413. shu

Influencing factors on fly ash adhesion features in Shell lignite gasifier

  • Corresponding author: MEI Le, 
  • Received Date: 18 July 2015
    Available Online: 23 October 2015

  • One coal and two representative fly ashes from the Shell gasification process were used in the study. One fly ash was the captured fly ash, and the other was taken from the heat exchanger. The particle size distribution, chemical composition, surface morphology of samples were studied by laser particle analyzer, X-ray fluorescence spectrometer and scanning electron microscopy respectively to explore the mechanisms of adhesion. The enrichment coefficient was used to describe the element migration from the coal to the fly ash. The results show that the formation of iron-bearing minerals and the enrichment of Na, K, Fe, S, P especially the enrichment of Na and Fe on the surface of fly ash particles are the main factors on the adhesion.
  • 加载中
    1. [1]

      [1] 盛新. Shell煤气化技术及其在大化肥装置的应用[J].大氮肥, 2007, 30(6):415-419. (SHENG xin. Shell coal gasification technology and its application in large chemical fertilizer plant[J]. Large Scale Nitrogenous Fert Ind, 2007, 30(6):415-419.)

    2. [2]

      [2] 刘增胜.大型煤制合成气技术进展[J].化肥工业, 2010, 37(4):5-10. (LIU Zeng-sheng. Progress in technology for large-scale manufacture of syngas from coal[J]. Chem Fert Ind, 2010, 37(4):5-10.)

    3. [3]

      [3] 汪家铭. Shell煤气化技术在我国的应用[J].化肥设计, 2007, 45(4):19-22. (WANG Jia-ming. Application of Shell coal gasification technology in China[J]. Chem Fert Des, 2007, 45(4):19-22.)

    4. [4]

      [4] DOERING E L, CREMER G A. Advances in the Shell coal gasification process[J]. Fuel, 1995, 40(2):312-317.

    5. [5]

      [5] 周夏.褐煤气化技术评述[J].煤化工, 2009, (6):1-4. (ZHOU Xia. Review of the lignite gasification technology[J]. Coal Chem Ind, 2009, (6):1-4.)

    6. [6]

      [6] 刘建忠,张光学,周俊虎,范海燕,岑可法.燃煤细灰的形成及微观形态特征[J].化工学报, 2006, 12(57):2976-2980. (LIU Jian-zhong, ZHANG Guang-xue, ZHOU Jun-hu, FAN Hai-yan, CEN Ke-fa. Formation and micromorphology character of fine particles generated during coal combustion[J]. J Chem Ind Eng, 2006, 12(57):2976-2980.)

    7. [7]

      [7] 于敦喜,徐明厚,易帆,黄建辉,李庚.燃煤过程中颗粒物的形成机理研究进展[J].煤炭转化, 2004, 27(4):7-12. (YU Guo-xi, XU Ming-hou, YI Fan, HUANG Jian-hui, LI Geng. A review on particle formation mechanisms during coal combustion[J]. Coal Convers, 2004, 27(4):7-12.)

    8. [8]

      [8] 马飞,李寒旭,盛新,纪明俊,贾春林. Shell煤气化飞灰黏附特性及沉积机理分析[J].煤炭科学技术, 2010, 38(10):114-117. (MA Fei, LI Han-xu, SHENG Xin, JI Ming-jun, JIA Chun-lin. Study on fly ash adhesion features and sedimentation mechanism of Shell coal gasification[J]. Coal Sci Technol, 2010, 38(10):114-117.)

    9. [9]

      [9] RIETEMA K. The dynamics of fine powders[J]. Elsevier Handling & Processing of Solids, 2011.

    10. [10]

      [10] 兰泽全,曹欣玉,周俊虎,岑可法.燃煤锅炉灰沉积物形成过程及机理综述[J].锅炉技术, 2008, 39(5):28-32. (LAN Ze-quan, CAO Xin-yu, ZHOU Jun-hu, CEN Ke-fa. Overview on forming course and mechanism of fly ash deposits in coal fired boiler[J]. Boiler Technol, 2008, 39(5):28-32.)

    11. [11]

      [11] BENJAMIN K, CHRISTOPH W, HARTMUT S. Improved numerical prediction of ash formation and deposition using a novel developed char fragmentation model[J]. Fuel, 2012, 98:103-110.

    12. [12]

      [12] 牛玉奇,段志广,沈小炎. Shell气化炉合成气冷却器积灰原因及应对策略[J].化肥设计, 2009, 47(4):22-25. (NIU Yu-qi, DUAN Zhi-guang, SHENG Xiao-yan. Ash deposition reason and its countermeasure for syngas cooler of Shell gasifier[J]. Chem Fert Des, 2009, 47(4):22-25.)

    13. [13]

      [13] 姚多喜,支霞臣,郑宝山.煤燃烧过程中5种微量元素的迁移和富集[J].环境化学, 2004, 23(1):31-37. (YAO Duo-xi, ZHI Xia-cheng, ZHENG Bao-shan. The transformation and concentration of 5 trace elements during coal combustion[J]. Environ Chem, 2004, 23(1):31-37.)

  • 加载中
    1. [1]

      Dongqi Cai Fuping Tian Zerui Zhao Yanjuan Zhang Yue Dai Feifei Huang Yu Wang . Exploration of Factors Influencing the Determination of Ion Migration Number by Hittorf Method. University Chemistry, 2024, 39(4): 94-99. doi: 10.3866/PKU.DXHX202310031

    2. [2]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    3. [3]

      Wenqi Gao Xiaoyan Fan Feixiang Wang Zhuojun Fu Jing Zhang Enlai Hu Peijun Gong . Exploring Nernst Equation Factors and Applications of Solid Zinc-Air Battery. University Chemistry, 2024, 39(5): 98-107. doi: 10.3866/PKU.DXHX202310026

    4. [4]

      Ruixin XUHongtuo LIChen SHIYanhong YAN . Factors influencing the spectral properties of composite luminescent materials SrTiO3: Eu3+/SrAl2O4: Eu2+, Dy3+. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2307-2316. doi: 10.11862/CJIC.20250055

    5. [5]

      Xin ZhouYiting HuoSongyu YangBowen HeXiaojing WangZhen WuJianjun Zhang . Understanding the effect of pH on protonated COF during photocatalytic H2O2 production by femtosecond transient absorption spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(12): 100160-0. doi: 10.1016/j.actphy.2025.100160

    6. [6]

      Jiayao Li Xinru Peng Shiwei Yin Changwei Wang Yirong Mo . Metastability of π-π stacking between the closed-shell ions of like charges. Chinese Journal of Structural Chemistry, 2024, 43(5): 100213-100213. doi: 10.1016/j.cjsc.2023.100213

    7. [7]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    8. [8]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    9. [9]

      Guo-Hong GaoRun-Ze ZhaoYa-Jun WangXiao MaYan LiJian ZhangJi-Sen Li . Core–shell heterostructure engineering of CoP nanowires coupled NiFe LDH nanosheets for highly efficient water/seawater oxidation. Chinese Chemical Letters, 2024, 35(8): 109181-. doi: 10.1016/j.cclet.2023.109181

    10. [10]

      Min SongQian ZhangTao ShenGuanyu LuoDeli Wang . Surface reconstruction enabled o-PdTe@Pd core-shell electrocatalyst for efficient oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(8): 109083-. doi: 10.1016/j.cclet.2023.109083

    11. [11]

      Qian-Qian TangLi-Fang FengZhi-Peng LiShi-Hao WuLong-Shuai ZhangQing SunMei-Feng WuJian-Ping Zou . Single-atom sites regulation by the second-shell doping for efficient electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(9): 109454-. doi: 10.1016/j.cclet.2023.109454

    12. [12]

      Bing ShenTongwei YuanWenshuang ZhangYang ChenJiaqiang Xu . Complex shell Fe-ZnO derived from ZIF-8 as high-quality acetone MEMS sensor. Chinese Chemical Letters, 2024, 35(11): 109490-. doi: 10.1016/j.cclet.2024.109490

    13. [13]

      Shudi YuJie LiJiongting YinWanyu LiangYangping ZhangTianpeng LiuMengyun HuYong WangZhengying WuYuefan ZhangYukou Du . Built-in electric field and core-shell structure of the reconstructed sulfide heterojunction accelerated water splitting. Chinese Chemical Letters, 2024, 35(12): 110068-. doi: 10.1016/j.cclet.2024.110068

    14. [14]

      Yaoyin LouXiaoyang Jerry HuangKuang-Min ZhaoMark J. DouthwaiteTingting FanFa LuOuardia AkdimNa TianShigang SunGraham J. Hutchings . Stable core-shell Janus BiAg bimetallic catalyst for CO2 electrolysis into formate. Chinese Chemical Letters, 2025, 36(3): 110300-. doi: 10.1016/j.cclet.2024.110300

    15. [15]

      Yangping ZhangTianpeng LiuJun YuZhengying WuDongqiong WangYukou Du . Amorphous/crystalline AgS@CoS core@shell catalysts for efficient oxygen evolution reaction. Chinese Chemical Letters, 2025, 36(8): 110275-. doi: 10.1016/j.cclet.2024.110275

    16. [16]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    17. [17]

      Ji Qi Jianan Zhu Yanxu Zhang Jiahao Yang Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050

    18. [18]

      Zhiwen HUPing LIYulong YANGWeixia DONGQifu BAO . Morphology effects on the piezocatalytic performance of BaTiO3. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 339-348. doi: 10.11862/CJIC.20240172

    19. [19]

      Weihan ZhangMenglu WangAnkang JiaWei DengShuxing Bai . Surface Sulfur Species Influence Hydrogenation Performance of Palladium-Sulfur Nanosheets. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-0. doi: 10.3866/PKU.WHXB202309043

    20. [20]

      Dan LUOXingcheng LIUDong LITong CHANG . Metal-support interaction effects on CO activation over Con/SiO2 catalysts. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2337-2344. doi: 10.11862/CJIC.20250003

Metrics
  • PDF Downloads(1)
  • Abstract views(1228)
  • HTML views(170)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return