Citation: WANG Hong-ming, MIAO Rong-rong, YANG Yong, QIAO Yu-hui, ZHANG Qiong-fang, LI Chun-sheng, HUANG Jiang-ping. Study on the catalytic gasification of alkali lignin over Ru/C nanotubes in supercritical water[J]. Journal of Fuel Chemistry and Technology, ;2015, 43(10): 1195-1201. shu

Study on the catalytic gasification of alkali lignin over Ru/C nanotubes in supercritical water

  • Corresponding author: MIAO Rong-rong, 
  • Received Date: 1 June 2015
    Available Online: 16 July 2015

    Fund Project: 国家自然科学基金(201307049) (201307049)云南省高端科技人才引进项目(2010CI110) (2010CI110)云南重大科技专项(2012ZB002) (2012ZB002)云南省大学生创新创业训练计划-褐煤超临界乙醇体系液化制油研究(201410674005)资助项目 (201410674005)

  • Aiming at the refractory characteristics of alkali lignin, the study on the gasification of alkali lignin in supercritical water was carried out in a batch reactor with Ru/C nanotubes as the catalyst. The effect of temperature, water density, time, concentration of the reactant, catalyst amount on the gasification of alkali lignin was discussed, as well as the catalytic efficiency of the Ru/C catalyst nanotubes. The optimum conditions of the catalytic gasification of alkali lignin on the Ru/C nanotubes obtained with single factor analysis were the reaction temperature of 600 ℃, 0.128 4 g/cm3 water density, 60 min reaction time, 3.0% reactant concentration, catalyst amount of 0.5 g/g (alkali lignin). The results show that during the gasification process of alkali lignin in supercritical water, the high temperature, high water density (or pressure), long reaction time, low reactant concentration and right amount of catalyst will be in favor of the gasification reaction. The alkali lignin gasification efficiency and carbon gasification efficiency reached 73.74% and 56.34% under the optimal reaction conditions, and the hydrogen production capacity was also significantly improved.
  • 加载中
    1. [1]

      [1] YANG H P, YAN R, CHEN H P, LEE D H, ZHENG C. Characteristics of hemicellulose, cellulose and lignin pyrolysis[J]. Fuel, 2007, 86(12): 1781-1788.

    2. [2]

      [2] GUO Y, WANG S Z, XU D H, GONG Y M, MA H H, TANG X Y. Review of catalytic supercritical water gasification for hydrogen production from biomass[J]. Renew Sust Energy Rev, 2010, 14(1): 334-343.

    3. [3]

      [3] SUI X J, WU S B. Study on mechanism of action of catalysts on liquefaction of bagasse alkali lignin[J]. Adv Mater Res, 2011, 383-390: 6145-6150.

    4. [4]

      [4] RESENDE F, SAVAGE P E. Expanded and updated results for supercritical water gasification of cellulose and lignin in metal-free reactors[J]. Energy Fuels, 2009, 23(12): 6213-6221.

    5. [5]

      [5] YAMAGUCHI A, HIVOSHI N, SATO O, OSADA M, SHIRAI M. Lignin gasification over supported ruthenium trivalent salts in supercritical water[J]. Energy Fuels, 2008, 22(3): 1485-1492.

    6. [6]

      [6] ANTAL JR M J, ALLEN S G, SCHULMAN D, XU X D. Biomass gasification in supercritical water. Ind Eng Chem Res, 2000, 39(11): 4040-4053.

    7. [7]

      [7] MINOWA T, ZHEN F, OGI T. Cellulose decomposition in hot-compressed water with alkali or nickel catalyst[J]. J Supercrit Fluid, 1998, 13: 253-259.

    8. [8]

      [8] YOSHIDA T, OSHIMA Y, MATSUMURA Y. Gasification of biomass model compounds and real biomass in supercritical water[J]. Biomass Bioenergy, 2004, 26(1): 71-78.

    9. [9]

      [9] HAO X H, GUO L J, MAO X, ZHANG X M, CHEN X J. Hydrogen production from glucose used as a model compound of biomass gasified in supercritical water[J]. Hydrogen Energy, 2003, 28: 55-64.

    10. [10]

      [10] LU Y, JI C M, GUO L J. Experimental investigation on hydrogen production by agricultural biomass gasification in supercritical water[J]. J Xi'an Jiaotong Univ, 2005, 39(3): 238-242.

    11. [11]

      [11] GUAN Q Q, WEI C H, SHI H. Partial oxidative gasification of phenol for hydrogen in supercritical water[J]. Appl Energy, 2011, 88(8): 2612-2616.

    12. [12]

      [12] MITSUMASA OS M, O S, KUNIO A, MASAYUKI S. Stability of supported ruthenium catalysts for lignin gasification in supercritical water[J]. Energy Fuels, 2006, 20(6): 2337-2343.

    13. [13]

      [13] ELLIOTT D C, SEALOEK JR L J, BAKER E G. Chemical processing in high pressure aqueous environments: 2.Development of catalysts for gasification[J]. Ind Eng Chem Res, 1993, 32(8): 1542-1548.

    14. [14]

      [14] RABE S, NACHTEGAAL M, ULRICH T. Towards understanding the catalytic reforming of biomass in supercritical water[J]. Angew Chemie, 2010, 49(36): 6434-6437.

    15. [15]

      [15] RESENDE F L P, FRALEY S A, BERGER M J. Noncatalytic gasification of lignin in supercritical water[J]. Energy Fuels, 2008, 22(2): 1328-1334.

    16. [16]

      [16] YOSHIDA T, OSHIMA T, MATSUMURA Y. Partial oxidative and catalytic biomass gasification in supercritical water: A promising flow reactor system[J]. Ind Eng Chem Res, 2004, 43(15): 4097-4104.

    17. [17]

      [17] STUCKI S, VOGEL F, LUDWIG C. Catalytic gasification of algae in supercritical water for biofuel production and carbon capture[J]. Energy Environ Sci, 2009, 2(5): 535-541.

    18. [18]

      [18] BRUNNER G. Near critical and supercritical water. Part I. Hydrolytic and hydrothermal[J]. J Supercrit Fluid, 2009, 47: 373-381.

    19. [19]

      [19] BERMEJO M D, COCERO M J. Supercritical water oxidation: A technical review[J]. Aiche J, 2006, 52(11):3933-3951.

    20. [20]

      [20] KRUSE A, DINJUS E. Hot compressed water as reaction medium and reactant: Properties and synthesis reactions[J]. J Supercrit Fluid, 2007, 39(3): 362-380.

    21. [21]

      [21] LUNDQUIST K, ERICSSON L. Low-molecular weight lignin hydrolysis products[C]. Appl Polymer Symp, 1976, 28: 1393-1407.

    22. [22]

      [22] ANTAL M J, MATSUMURA Y, XU X. Catalytic gasification of wet biomass in supercritical water[J]. Prepr Pap-Am Chem Soc, Div Fuel Chem, 1995, 40(2): 304-407.

    23. [23]

      [23] 毛肖岸, 郝小红, 张西民, 郭烈锦. 超临界水中葡萄糖气化制氢实验研究[J]. 化学工程, 2004, 32(5): 25-28. (MAO Xiao-an, HAO Xiao-hong, ZHANG Xi-min, GUO Lie-jin. Experimental study of hydrogen production from glucose gasification in supercritical water[J]. Chem Eng J, 2004, 32(5): 25-28.)

  • 加载中
    1. [1]

      Qishen WangChangzhao ChenMengqing LiLingmin WuKai Dai . Lignin derived carbon quantum dots and oxygen vacancies coregulated S-scheme LCQDs/Bi2WO6 heterojunction for photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(11): 100147-0. doi: 10.1016/j.actphy.2025.100147

    2. [2]

      Hong Wu Yuxi Wang Hongyan Feng Xiaokui Wang Bangkun Jin Xuan Lei Qianghua Wu Hongchun Li . Application of Computational Chemistry in the Determination of Magnetic Susceptibility of Metal Complexes. University Chemistry, 2025, 40(3): 116-123. doi: 10.12461/PKU.DXHX202405141

    3. [3]

      Xinghai LiZhisen WuLijing ZhangShengyang Tao . Machine Learning Enables the Prediction of Amide Bond Synthesis Based on Small Datasets. Acta Physico-Chimica Sinica, 2025, 41(2): 100010-0. doi: 10.3866/PKU.WHXB202309041

    4. [4]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    5. [5]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    6. [6]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    7. [7]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    8. [8]

      Pengzi Wang Wenjing Xiao Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090

    9. [9]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    10. [10]

      Jiayin Hu Yafei Guo Long Li Tianlong Deng . Teaching Innovation of Salt-Water System Phase Diagrams under the “Dual Carbon” Background: Introducing the Pressurized CO2 Carbonization Phase Equilibria. University Chemistry, 2025, 40(11): 31-36. doi: 10.12461/PKU.DXHX202412031

    11. [11]

      Wuxin BaiQianqian ZhouZhenjie LuYe SongYongsheng Fu . Co-Ni Bimetallic Zeolitic Imidazolate Frameworks Supported on Carbon Cloth as Free-Standing Electrode for Highly Efficient Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305041-0. doi: 10.3866/PKU.WHXB202305041

    12. [12]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    13. [13]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    14. [14]

      Zhonghan Xu Yuejia Li Kin Shing Chan . 碳中和新旅程. University Chemistry, 2025, 40(6): 167-171. doi: 10.12461/PKU.DXHX202407075

    15. [15]

      Zixuan Zhao Miao Fan . “Carbon” with No “Ester”: A Boundless Journey of CO2 Transformation. University Chemistry, 2025, 40(7): 213-217. doi: 10.12461/PKU.DXHX202409040

    16. [16]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    17. [17]

      Zhi Chai Huashan Huang Xukai Shi Yujing Lan Zhentao Yuan Hong Yan . Wittig反应的立体选择性. University Chemistry, 2025, 40(8): 192-201. doi: 10.12461/PKU.DXHX202410046

    18. [18]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    19. [19]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    20. [20]

      Ruitong Zhang Zhiqiang Zeng Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004

Metrics
  • PDF Downloads(0)
  • Abstract views(501)
  • HTML views(25)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return