Citation: HAN Lu, ZHOU Ya-song, WEI Qiang, LUO Yi, WANG Jing-yu. Effect of acidity and hydrogenation ability on the hydrodenitrogenation performance of NiW/Al2O3 catalyst[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(10): 1233-1239. shu

Effect of acidity and hydrogenation ability on the hydrodenitrogenation performance of NiW/Al2O3 catalyst

  • Corresponding author: ZHOU Ya-song, 
  • Received Date: 25 March 2014
    Available Online: 5 May 2014

    Fund Project: 国家自然科学基金(U1362203) (U1362203) 国家重点基础研究发展规划(973计划, 2010CB226903)。 (973计划, 2010CB226903)

  • NiW/Al2O3 catalysts for the hydrodenitrogenation of heavy oil were prepared by nickel-tungstate active metals located on Al2O3 with wetness impregnation. The effect of boric acid on the acidity and the effect of citric acid on the hydrogenation ability were studied. The results of NH3-TPD, HRTEM, H2-TPR and XPS showed that the addition of boric acid increased the proportion of strong and medium acid. The strong interaction between the support and metal has been weakened. Citric acid achieved moderate length of Ni-W-S active phases, increased the dispersion and the sulfidation degree of the metal on catalysts surface. NiW catalyst modified with boron acid and citric acid had outstanding HDN performance for Venezuela deasphalted oil, promoted the hydrogenation of aromatics and resin. It also had strong HDN abilities to basic and non-basic nitrogen compounds. The catalyst showed outstanding HDN performance of heavy oil.
  • 加载中
    1. [1]

      [1] FAN Y, BAO X J. Citric acid-assisted hydrothermal method for preparing NiW/USY-Al2O3 ultra deep hydro-desulfurization catalysts[J]. J Catal, 2011, 279(1): 27-35.

    2. [2]

      [2] SATO S, KUROKI M, SODESAWA T, NOZAKI F, MACIEL G E. Surface structure and acidity of alumina-boric catalysts[J]. J Mol Catal A: Chem, 1995, 104: 171-177.

    3. [3]

      [3] DING L H, ZHANG Z S, ZHENG Y, RING Z, CHEN J W. Effect of fluorine and boron modification on the HDS, HDN and HDA activity of hydrotreating catalysts[J]. Appl Catal A: Gen, 2006, 301(2): 241-250.

    4. [4]

      [4] HENSEN E J M, KOOYMAN P J, VAN DER MEER Y, VAN DER KRAAN A M, DE BEER V H J, VAN VEEN J A R, VAN SANTEN R A. The relation between morphology and hydrotreating activity for supported MoS2 particles[J]. J Catal, 2001, 199(2): 224-235.

    5. [5]

      [5] FUJIKAWA T. Highly active CoMo HDS catalyst for the production of clean diesel fuels[J]. Catal Surv Asia, 2006, 10(2): 89-97.

    6. [6]

      [6] SUNDARAMURTHY V, DALAI A K, ADJAYE J. The effect of phosphorus on hydrotreating property of NiMo/γ-Al2O3 nitride catalyst[J]. Appl Catal A: Gen, 2008, 335(1): 204-210.

    7. [7]

      [7] PALCHEVA R, KALUZA L, SPOJAKINA A, JIRATOVA K, TYULIEV G. NiMo/γ-Al2O3 catalysts from Ni heteropolyoxomolybdate and effect of alumina modification by B, Co, or Ni[J]. Chin J Catal, 2012, 33(4/6): 952-961.

    8. [8]

      [8] KRAUS H, PRINS R. Composition of impregnation solutions and wet impregnated Mo-P/γ-Al2O3 catalysts as investigated by 31P and 95Mo NMR[J]. J Catal, 1996, 164(2): 251-259.

    9. [9]

      [9] LEWANDOWSKI M, SARBAK Z. The effect of boron addition on hydrodesulfurization and hydrodenitrogenation activity of NiMo/Al2O3 catalysts[J]. Fuel, 2000, 79(5): 487-495.

    10. [10]

      [10] MAITY S K, LEMUS M, ANCHEYTA J. Effect of preparation methods and content of boron on hydrotreating catalytic activity[J]. Energy Fuels, 2011, 25(7): 3100-3107.

    11. [11]

      [11] SUN M Y, NICOSIA D, PRINS R. The effects of fluorine, phosphate and chelating agents on hydrotreating catalysts and catalysis[J]. Catal Today, 2003, 86(1/4): 173-189.

    12. [12]

      [12] 倪月琴, 憬龄, 赵瑛. 工业用加氢脱氮催化剂所含MoS2的形貌[J]. 催化学报, 1994, 15(6): 422-425. (NI Yue-qin, JING Ling, ZHAO Ying. The MoS2 morphology of industrial hydrodenitrogenation catalysts[J]. Chinese Journal of Catalysis, 1994, 15(6): 422-425.)

    13. [13]

      [13] XIANG C, CHAI Y M, LIU C G. Effect of phosphorus on the hydro-desulfurization and hydro-denitrogenation performance of presulfided NiMo/Al2O3 catalyst[J]. J Chem Phys, 2011, 39(5): 355-360.

    14. [14]

      [14] SCHEFFER B, HEIJEINGA J J, MOULIJIN J A. An electron spectroscopy and X-ray diffraction study of NiO/Al2O3 and WO3/Al2O3 catalysts[J]. J Phys Chem, 1987, 91(18): 4752-4759.

    15. [15]

      [15] MINGYONG S, BURGI T, CATTANEO R, VAN LANGEVELD D, PRINS R. TPS, XPS, QEXAFS and XANES investigation of the Sulfidation of NiW/Al2O3-F catalysts[J]. J Catal, 2001, 201(2): 258-269.

    16. [16]

      [16] QIU L M, XU G T. Peak overlaps and corresponding solutions in the X-ray photoelectron spectroscopic study of hydro-desulfurization catalysts[J]. Appl Surf Sci, 2010, 256(11): 3413-3417.

    17. [17]

      [17] BAKER M A, GILMORE R, LENARDI C, GISSLER W. XPS investigation of preferential sputtering of S from MoS2 and determination of MoSx stoichiometry from Mo and S peak positions[J]. Appl Surf Sci, 1999, 150(1/4): 255-262.

    18. [18]

      [18] TAYEB K B, LAMONIER C, LANCELOT C, FOURNIER M, BONDUELLE A, BERTONCINI F. Active phase genesis of NiW hydrocracking catalysts based on nickel salt heteropolytungstate: Comparison with reference catalyst[J]. Appl Catal B: Environ, 2012, 126: 55-63.

    19. [19]

      [19] YU G L, ZHOU Y S, WEI Q. A novel method for preparing well dispersed and highly sulfide NiW hydro-denitrogenation catalyst[J]. Catal Commun, 2012, 23: 48-53.

  • 加载中
    1. [1]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    2. [2]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    3. [3]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    4. [4]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    5. [5]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    6. [6]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    7. [7]

      Qinhui GuanYuhao GuoNa LiJing LiTingjiang Yan . Molecular sieve-mediated indium oxide catalysts for enhancing photocatalytic CO2 hydrogenation. Acta Physico-Chimica Sinica, 2025, 41(11): 100133-0. doi: 10.1016/j.actphy.2025.100133

    8. [8]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    9. [9]

      Hailang JIAYujie LUPengcheng JI . Preparation and properties of nitrogen and phosphorus co-doped graphene carbon aerogel supported ruthenium electrocatalyst for hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2327-2336. doi: 10.11862/CJIC.20250021

    10. [10]

      Jingkun YuXue YongAng CaoSiyu Lu . Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015-0. doi: 10.3866/PKU.WHXB202307015

    11. [11]

      Hailian TangSiyuan ChenQiaoyun LiuGuoyi BaiBotao QiaoLiu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-0. doi: 10.3866/PKU.WHXB202408004

    12. [12]

      Yu WangHaiyang ShiZihan ChenFeng ChenPing WangXuefei Wang . 具有富电子Ptδ壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-0. doi: 10.1016/j.actphy.2025.100081

    13. [13]

      Qi WangYuqing LiuJiefei WangYuan-Yuan MaJing DuZhan-Gang Han . Catalysts for electrocatalytic dechlorination of chlorinated aromatic hydrocarbons: synthetic strategies, applications, and challenges. Acta Physico-Chimica Sinica, 2025, 41(10): 100120-0. doi: 10.1016/j.actphy.2025.100120

    14. [14]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    15. [15]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    16. [16]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    17. [17]

      Ying Chen Ronghua Yan Weiyan Yin . Research Progress on the Synthesis of Metal Single-Atom Catalysts and Their Applications in Electrocatalytic Hydrogen Evolution Reactions. University Chemistry, 2025, 40(9): 344-353. doi: 10.12461/PKU.DXHX202503066

    18. [18]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    19. [19]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    20. [20]

      Shiqian WEIXinyu TIANHong LIUMaoxia CHENFan TANGQiang FANWeifeng FANYu HU . Oxygen reduction reaction/oxygen evolution reaction catalytic performances of different active sites on nitrogen-doped graphene loaded with iron single atoms. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1776-1788. doi: 10.11862/CJIC.20250102

Metrics
  • PDF Downloads(0)
  • Abstract views(908)
  • HTML views(76)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return