Citation: OUYANG Xin-ping, HUANG Xiang-zhen, QIU Xue-qing. Liquefaction of wheat straw alkali lignin under microwave irradiation[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(10): 1212-1217. shu

Liquefaction of wheat straw alkali lignin under microwave irradiation

  • Corresponding author: QIU Xue-qing, 
  • Received Date: 5 June 2014
    Available Online: 4 July 2014

    Fund Project: 国家重点基础研究发展规划(973计划, 2012CB215302)。 (973计划, 2012CB215302)

  • The effects of liquefying agent, catalyst, reaction temperature and time on the yield of bio-oil in microwave assisted liquefaction of wheat straw alkali lignin were investigated. And the liquefaction products were characterized by FT-IR, GC-MS and 1H-NMR. It is found that microwave irradiation greatly shortens liquefaction time with methanol as liquefying agent and ferric sulfate as catalyst, where the yield of bio-oil is up to 55.22% at the relatively low liquefaction temperature of 160 ℃ for 5 min. The structure of residual lignin after liquefaction exhibits very limited variation, indicating that the degraded lignin fragments have lower probability of recondensation, and residual lignin can be reused to improve the utilization rate of lignin. The identified liquefaction products are mainly monophenolic compounds, in which S, G and H type compounds account for 57.72%, 25.28% and 8.98%, respectively. The existence of the signals for β-O-4 and C-C bonds in the 1H-NMR spectra suggests that the bio-oils include a small amount of dimers and oligomers except for monophenolic compounds.
  • 加载中
    1. [1]

      [1] CUI C, SUN R, ARGYROPOULOS D S. Fractional precipitation of softwood kraft lignin: Isolation of narrow fractions common to a variety of lignins[J]. ACS Sus Chem Eng, 2014, 2(4): 959-968.

    2. [2]

      [2] PETROCELLI F P, KLEIN M T. Chemical modeling analysis of the yields of single-ring phenolics from lignin liquefaction[J]. Ind Eng Chem Prod Res Dev, 1985, 24(4): 635-641.

    3. [3]

      [3] HORÁCEK J, HOMOLA F, KUBICKOVÁ I, KUBICKA D. Lignin to liquids over sulfided catalysts[J]. Catal Today, 2012, 179(1): 191-198.

    4. [4]

      [4] 叶俊, 李广学, 周博涵, 曹从伟, 杨和彦, 李家鸣. ZnCl2催化木质素磺酸盐加氢液化的溶剂效应[J]. 燃料化学学报, 2012, 40(3): 321-325. (YE Jun, LI Guang-xue, ZHOU Bo-han, CAO Cong-wei, YANG He-yan, LI Jia-ming. Solvent effect of lignosulfonate liquefaction by ZnCl2 catalyzed hydrogenation[J]. Journal of Fuel Chemistry and Technology, 2012, 40(3): 321-325.)

    5. [5]

      [5] 陈啸, 成有为, 李希. 甲醇降解碱木质素[J]. 化学反应工程与工艺, 2012, 28(2): 129-137. (CHEN Xiao, CHENG You-wei, LI Xi. Degradation of alkali lignin in methanol[J]. Chemical Reaction Engineering and Technology, 2012, 28(2): 129-137.)

    6. [6]

      [6] VOITL T, ROHR P R. Demonstration of a process for the conversion of kraft lignin into vanillin and methyl vanillate by acidic oxidation in aqueous methanol[J]. Ind Eng Chem Res, 2009, 49(2): 520-525.

    7. [7]

      [7] CHENG S, D'CRUZ I, WANG M, LEITCH M, XU C. Highly efficient liquefaction of woody biomass in hot-compressed alcohol-water co-solvents[J]. Energy Fuel, 2010, 24(9): 4659-4667.

    8. [8]

      [8] CHUMPOO J, PRASASSARAKICH P. Bio-oil from hydro-liquefaction of bagasse in supercritical ethanol[J]. Energy Fuel, 2010, 24(3): 2071-2077.

    9. [9]

      [9] NAGPURKAR L P, CHAUDHARI A R, EKHE J D. Formation of industrially important chemicals from thermal and microwave assisted oxidative degradation of industrial waste lignin[J]. Asian J Chem, 2002, 14(3): 1387-1392.

    10. [10]

      [10] DONG C, FENG C, LIU Q, SHEN D, XIAO R. Mechanism on microwave-assisted acidic solvolysis of black-liquor lignin[J]. Bioresource Technol, 2014, 162: 136-141.

    11. [11]

      [11] TOLEDANO A, SERRANO L, PINEDA A, ROMERO A A, LUQUE R, LABIDI J. Microwave-assisted depolymerisation of organosolv lignin via mild hydrogen-free hydrogenolysis: Catalyst screening[J]. Appl Catal B: Environ, 2014, 145: 43-55.

    12. [12]

      [12] BARTA K, MATSON T D, FETTIG M L, SCOTT S L, IRETSKII A V, FORD P C. Catalytic disassembly of an organosolv lignin via hydrogen transfer from supercritical methanol[J]. Green Chem, 2010, 12(9): 1640-1647.

    13. [13]

      [13] OASMAA A, KUOPPALA E, SELIN J F, GUST S, SOLANTAUSTA Y. Fast pyrolysis of forestry residue and pine.4. Improvement of the product quality by solvent addition[J]. Energy Fuel, 2004, 18(5): 1578-1583.

    14. [14]

      [14] 张朝红, 凌洪洁, 臧树良, 单亚波, 董殿波, 陈中林, 赵哲, 张春华. 硫酸铁改性活性炭催化微波降解甲基对硫磷[J]. 农药, 2007, 46(1): 40-42. (ZHANG Chao-hong, LING Hong-jie, ZANG Shu-liang, SHAN Ya-bo, DONG Dian-bo, CHEN Zhong-lin, ZHAO Zhe, ZHANG Chun-hua. Investigation on microwave degradation of parathion-methyl in the presence of modified active carbon catalyst with ferric sulfate[J]. Agrochemicals, 2007, 46(1): 40-42.)

    15. [15]

      [15] DERKACHEVA O, SUKHOV D. Investigation of lignins by FTIR spectroscopy[J]. Macromol Symp, 2008, 265(1): 61-68.

    16. [16]

      [16] CHIRILA O, TOTOLIN M, CAZACU G, DOBROMIR M, VASILE C. Lignin modification with carboxylic acids and butyrolactone under cold plasma conditions[J]. Ind Eng Chem Res, 2013, 52(37): 13264-13271.

    17. [17]

      [17] 杨东杰, 周海峰, 谢绍朐, 伍晓蕾, 邱学青. 漆酶活化碱木质素的磺甲基化反应活性研究[J]. 高分子学报, 2013, 2(2): 232-240. (YANG Dong-jie, ZHOU Hai-feng, XIE Shao-qu, WU Xiao-lei, QIU Xue-qing. Sulfomethylation reactivity of alkali lignin with laccase modification[J]. Acta Polymerica Sinica, 2013, 2(2): 232-240.)

    18. [18]

      [18] 陈晓旭, 孙付保, 张建华, 毛忠贵. 麦草木质素在甘油蒸煮过程中结构的变化[J]. 化工进展, 2010, 29(12): 2330-2335. (CHEN Xiao-xu, SUN Fu-bao, ZHANG Jian-hua, MAO Zhong-gui. Configuration variation of wheat straw lignin during cooking process with glycerol[J]. Chemical Industry and Engineering Progress, 2010, 29(12): 2330-2335.)

    19. [19]

      [19] MULLEN C A, STRAHAN G D, BOATENG A A. Characterization of various fast-pyrolysis bio-oil by NMR spectroscopy[J]. Energy Fuel, 2009, 23(5): 2707-2718.

  • 加载中
    1. [1]

      Yue ZhangBao LiLixin Wu . GO-Assisted Supramolecular Framework Membrane for High-Performance Separation of Nanosized Oil-in-Water Emulsions. Acta Physico-Chimica Sinica, 2024, 40(5): 2305038-0. doi: 10.3866/PKU.WHXB202305038

    2. [2]

      Qishen WangChangzhao ChenMengqing LiLingmin WuKai Dai . Lignin derived carbon quantum dots and oxygen vacancies coregulated S-scheme LCQDs/Bi2WO6 heterojunction for photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(11): 100147-0. doi: 10.1016/j.actphy.2025.100147

    3. [3]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    4. [4]

      Lu ZhuoranLi ShengkaiLu YuxuanWang ShuangyinZou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003

    5. [5]

      Lanhui Zhang Ruiyuan Xu Yingying Weng Wanmei Li . Sapindus: Endless Wonders of “Soap”, Infinite Possibilities of “Oil”. University Chemistry, 2025, 40(11): 210-215. doi: 10.12461/PKU.DXHX202412032

    6. [6]

      Yuena Yu Fang Fang . Microwave-Assisted Synthesis of Safinamide Methanesulfonate. University Chemistry, 2024, 39(11): 210-216. doi: 10.3866/PKU.DXHX202401076

    7. [7]

      Liuxie Liu Jing He Jiali Du Shuang Mao Qianggen Li . Extension of Computational Chemical-Assisted Dipole Moment Measurement Experiment. University Chemistry, 2025, 40(3): 363-370. doi: 10.12461/PKU.DXHX202407108

    8. [8]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    9. [9]

      Haotong MaMingyu HengYang XuWei BiYingchun MiaoShuning Xiao . Synergistic carbon doping and Cu loading on boron nitride via microwave synthesis for enhanced atmospheric CO2 photoreduction. Acta Physico-Chimica Sinica, 2025, 41(11): 100132-0. doi: 10.1016/j.actphy.2025.100132

    10. [10]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    11. [11]

      Chenyang WANGYiyan BAIWei ZHANGZhaorong LIUYuchun WANG . Performance of photo-assisted copper oxide catalyzed hydrolysis of ammonia borane to produce hydrogen. Chinese Journal of Inorganic Chemistry, 2026, 42(1): 97-110. doi: 10.11862/CJIC.20250116

    12. [12]

      Zhen Zhang Jie Liu Hongwei Kang Cuibing Bai Jitang Chen . Exploration of 3D Printing-Assisted Teaching of Chemical Engineering Principles Driven by New Quality Productive Forces. University Chemistry, 2026, 41(2): 21-27. doi: 10.12461/PKU.DXHX202501021

    13. [13]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.

    14. [14]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    15. [15]

      Yifan Liu Haonan Peng . AI-Assisted New Era in Chemistry: A Review of the Application and Development of Artificial Intelligence in Chemistry. University Chemistry, 2025, 40(7): 189-199. doi: 10.12461/PKU.DXHX202405182

    16. [16]

      Lin LILe CHENLingjie HOUJiaqi JINGJiayu DINGTao ZHOURuiping ZHANG . Smartphone-assisted fluorescent silver nanoclusters as ratiometric sensor for visual colorimetric detection of sulfide. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2261-2271. doi: 10.11862/CJIC.20250130

    17. [17]

      Ruiying Zhao Shuheng Luo Jinke Li Junjie Zhang Min Zhu Yang Li Yanhong Bai Yinhuan Li Lijuan Wang . Ultrasonic-Assisted Synthesis of Rosacetal: A Comprehensive Research-Oriented Organic Chemistry Experiment. University Chemistry, 2025, 40(11): 300-309. doi: 10.12461/PKU.DXHX202412075

    18. [18]

      Tengyue ZHANGJingjing FENGZili LIANGJia′nan DAIJing MA . Optimization of C-doped BiVO4 performance for tetracycline degradation using response surface methodology-assisted orthogonal experiments. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2561-2574. doi: 10.11862/CJIC.20250104

    19. [19]

      Jingxuan Zhang Weihao Jiang Siyuan Zhang Hongye Tian Ziye Huang Lin Huang Qikun Wu Jing Yang Yibin Jiang Cheng Wang . Automation and AI-Assisted Investigation of the Chemical Reactivity of Sulfosalicylic Acid. University Chemistry, 2026, 41(1): 332-345. doi: 10.12461/PKU.DXHX202505108

    20. [20]

      Fangxuan LiuZiyan LiuGuowei ZhouTingting GaoWenyu LiuBin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071

Metrics
  • PDF Downloads(0)
  • Abstract views(660)
  • HTML views(41)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return