Citation: LI Shao-hua, ZHANG Xue-bin, CHE De-yong. TG-FTIR experimental study on co-gasification of pine sawdust and lignite[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(2): 181-186. shu

TG-FTIR experimental study on co-gasification of pine sawdust and lignite

  • Corresponding author: LI Shao-hua, 
  • Received Date: 2 August 2013
    Available Online: 30 October 2013

    Fund Project: 吉林省产业技术研究与开发专项资金项目(2009030) (2009030)

  • The TG-FTIR anaylsis technology was applied to analyze the co-gasification process and gasification products of pine sawdust, lignite and their mixtures. The influence of mixing ratio, heating rate and reaction atmosphere on the co-gasification process was also studied. The results show that the pine sawdust can improve the reactivity of samples. As the mixing ratio of pine sawdust is increasing, the mass loss rate of gasification decreases, and the beginning temperature and the peak area of CO formation have a decreasing tendency. It is found that the lower heating rate is advantageous to the formation of CO and CH4. With increasing the heating rate, the DTG curves move to higher temperature ranges, the maximum weight loss rate increases, and the pine sawdust peak disappears. The effect of CO2 atmosphere on the weight loss of devolatilization is not significant. The two peaks of devolatilization are corresponding to the volatile combustion and fixed carbon combustion in air, and the coke gasification is not significant in the atmosphere of air.
  • 加载中
    1. [1]

      [1] 步学朋, 王鹏, 忻仕河. 煤炭气化多联产生产代用天然气分析[J]. 煤化工, 2007, 11(6): 4-7. (BU Xue-peng, WANG Peng, XIN Shi-he. Analysis of coal gasification/poly-generation to produce Substitute Natural Gas (SNG)[J]. Coal Chemical Industry, 2007, 11(6): 4-7.)

    2. [2]

      [2] 姜英, 涂华. 我国商品褐煤低位发热量回归式的推导[J]. 煤炭学报, 2004, 29(4): 477-480. (JIANG Ying, TU Hua. Equations of calculating calorific value of lignite in China[J].Journal of China Coal Society, 2004, 29(4): 477-480.)

    3. [3]

      [3] 程世庆, 尚琳琳. 生物质的热解过程及其动力学规律[J]. 煤炭学报, 2006, 31(4): 501-505. (CHENG Shi-qing, SHANG Lin-lin.The pyrolysis characteristics of biomass and its dynam ics law[J]. Journal of China Coal Society, 2006, 31(4): 501-505.)

    4. [4]

      [4] 闵凡飞, 张明旭. 新鲜生物质催化热解气化制富氢燃料气的试验研究[J]. 煤炭学报, 2006, 31(5): 649-653. (MIN Fan-fei, ZHANG Ming-xu. Trial study on catalytic pyrolysis gasification of fresh biomass to produce hydrogen rich gas[J]. Journal of China Coal Society, 2006, 31(5): 649-653.)

    5. [5]

      [5] FASINA O, LITTLEFIELD B. TG-FTIR analysis of pecan shells thermal decomposition[J]. Fuel Process Technol, 2012, 102: 61-66.

    6. [6]

      [6] BASSILAKIS R, CARANGELO R M. TG-FTIR analysis of biomass pyrolysis[J]. Fuel, 2001, 80(12): 1765-1786.

    7. [7]

      [7] WÓJTOWICZ M A, BASSILAKIS R. Modeling the evolution of volatile species during tobacco pyrolysis[J]. J Anal Appl Pyrolysis, 2003, 66(1/2): 235-261.

    8. [8]

      [8] 阎维平, 陈吟颖. 生物质混合物与煤共热解的协同特性[J]. 中国电机工程学报, 2007, 27(2): 80-86. (YAN Wei-ping, CHEN Yin-ying. Interaction performance of Co-pyrolysis of biomass mixture and coal of different rank[J]. Proceedings of the CSEE, 2007, 27(2): 80-86.)

    9. [9]

      [9] LIU X G, LI B Q. Theoretical elucidation of distributed activation energy model and ITS applications in char gasification[J]. Journal of Fuel Chemistry and Technology, 2001, 29(1): 54-59.)

    10. [10]

      [10] ARENILLAS A, RUBIERA F. Influence of char structure on reactivity and nitric oxide emissions[J]. Fuel Process Technol, 2002, 77: 103-109.

    11. [11]

      [11] CETIN E, MOGHTADERIB B, GUPTA R. Influence of pyrolysis conditions on the structure and gasification reactivity of biomass chars[J]. Fuel, 2004, 83(16): 2139-2150.

    12. [12]

      [12] VLADIMIR VAND. A theory of the irreversible electrical resistance changes of metallic films evaporated in vacuum[J]. Proc Phys Soc, 1943, 55(3): 222-246.

    13. [13]

      [13] 向银花, 王洋. 煤气化动力学模型研究[J]. 燃料化学学报, 2002, 30(1): 21-26. (XIANG Yin-hua, WANG Yang. A study on kinetic models of char gasification[J]. Journal of Fuel Chemistry and Technology, 2002, 30(1): 21-26.)

    14. [14]

      [14] 贾相如, 金保升. 污水污泥热解和燃烧特性的实验研究[J]. 锅炉技术, 2005, 36(6): 39-42. (JIA Xiang-ru, JIN Bao-sheng. An analysis of the reason for the break of the fire-resistant material on circulating fluidize bed boiler[J]. Boiler Technology, 2005, 36(6): 39-42.)

    15. [15]

      [15] WANG Q, ZHAO W, LIU H. Interactions and kinetic analysis of oil shale semi-coke with cornstalk during Co-combustion[J]. Appl Energy, 2011, 88(6): 2080-2087.

    16. [16]

      [16] BIAGINI E, LIPPI F, PETARCA L. Devolatilization rate of biomasses and coal-biomass blends: An experimental investigation[J]. Fuel, 2002, 81(8): 1041-1050.

  • 加载中
    1. [1]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

    2. [2]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    3. [3]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    4. [4]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    5. [5]

      Yadan Luo Hao Zheng Xin Li Fengmin Li Hua Tang Xilin She . 调节O,S共掺杂C3N4中的活性氧生成以促进光催化降解微塑料. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-. doi: 10.1016/j.actphy.2025.100052

    6. [6]

      Lijuan Wang Yuping Ning Jian Li Sha Luo Xiongfei Luo Ruiwen Wang . Enhancing the Advanced Nature of Natural Product Chemistry Laboratory Courses with New Research Findings: A Case Study of the Application of Berberine Hydrochloride in Photodynamic Antimicrobial Films. University Chemistry, 2024, 39(11): 241-250. doi: 10.12461/PKU.DXHX202403017

    7. [7]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . 设计热力学稳定的贵金属单原子光催化剂用于乙醇的高效非氧化转化形成高纯氢和增值产物乙醛. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    8. [8]

      Dongdong Yao JunweiGu Yi Yan Junliang Zhang Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125

Metrics
  • PDF Downloads(0)
  • Abstract views(298)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return