Citation: WANG Xi-ming, ZHU Huai-li, WANG Xing-jun, LIU Hai-feng, YU Guang-suo, WANG Fu-chen. Transformation of K2CO3 as a catalyst during coal char pyrolysis and its effect on coal char catalytic gasification[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(2): 175-180. shu

Transformation of K2CO3 as a catalyst during coal char pyrolysis and its effect on coal char catalytic gasification

  • Corresponding author: WANG Xing-jun, 
  • Received Date: 28 June 2013
    Available Online: 24 August 2013

    Fund Project: 国家重点基础研究发展规划(973计划,2010CB227000)。 (973计划,2010CB227000)

  • The transformation of K2CO3 in the course of Shenfu char catalytic pyrolysis under different temperatures was studied in the fixed-bed reactor; the influence of loading methods of K2CO3 and particle size on gasification reactivity was investigated in a TG-DSC analytical reactor. The results showed that with the increase of temperature, the effect of loading methods on gasification rate is weakened; K catalyst shows high dispersity by means of SEM/EDX analysis of pyrolysis residue. CO2 and CO are produced through the interaction of K2CO3 and coal char in the pyrolysis and there is a linear relation between the amount of released gas and temperature. The particle size of K2CO3 and coal char has notable impact on gasification; the gasification rate increase with a thinner particle at 650 ℃. K2CO3 shows high mobility within the coal char phase at elevated temperature, which is consistent with its catalytic activities; the effect of loading methods on gasification should be considered under a temperature below 700 ℃.
  • 加载中
    1. [1]

      [1] HIGMAN C, van der BURGT M. Gasification. 2nd ed[M]. Amsterdam: Elsevier, 2008.

    2. [2]

      [2] WOOD B J, SANCIER K M. The mechanism of the catalytic gasification of coal char: A critical review[J]. Catal Rev Sci Eng, 1984, 26: 233-279.

    3. [3]

      [3] SHETH A C, SASTRY C, YEBOAH Y D, XU Y, AGARWAL P. Catalytic gasification of coal using eutectic salts: Reaction kinetics for hydrogasification using binary and ternary eutectic catalysts[J]. Fuel, 2004, 83(4/5): 557-572.

    4. [4]

      [4] 杨景标, 蔡宁生, 李振山. 几种金属催化褐煤焦水蒸气气化的实验研究[J]. 中国电机工程学报, 2007, 27(26): 7-12. (YANG Jing-biao, CAI Ning-sheng, LI Zhen-shan. Experimental study on steam gasification of lignite char catalyzed by several metals[J]. Proceedings of the CSEE, 2007, 27(26): 7-12.)

    5. [5]

      [5] LEE W J, KIM S D. Catalytic activity of alkali and transition metal salt mixtures for steam-char gasification[J]. Fuel, 1995, 74(9): 1387-1393.

    6. [6]

      [6] 陈凡敏, 王兴军, 王西明, 周志杰. 煤催化气化过程中钾的迁移及其对气化反应特性的影响[J]. 燃料化学学报, 2013, 41(3): 265-270. (CHEN Fan-min, WANG Xing-jun, WANG Xi-ming, ZHOU Zhi-jie. Transformation of potassium during catalytic gasification of coal and the effect on gasification[J]. Journal of Fuel Chemistry and Technology, 2013, 41(3): 265-270.)

    7. [7]

      [7] 杨景标, 蔡宁生, 张彦文. 催化剂添加量对褐煤焦水蒸气气化反应性的影响[J]. 燃料化学学报, 2008, 36(1): 15-22. (YANG Jing-biao, CAI Ning-sheng, ZHANG Yan-wen. Effect of catalyst loading on the gasification reactivity of a lignite char with steam[J]. Journal of Fuel Chemistry and Technology, 2008, 36(1): 15-22.)

    8. [8]

      [8] WOOD B J, FLEMING R H, WISE H. Reactive intermediate in the alkali-carbonate-catalysed gasification of coal char[J]. Fuel, 1984, 63(11): 1600-1603.

    9. [9]

      [9] KARIMI A, GRAY M R. Effectiveness and mobility of catalysts for gasification of bitumen coke[J]. Fuel, 2011, 90(1): 120-125.

    10. [10]

      [10] 殷宏彦. 碱金属碳酸盐对煤CO2气化反应性影响的研究[D]. 太原: 太原理工大学, 2010. (DUAN Hong-yan. Study on influence of alkali carbonates to gasification reactivity of coal with CO2[D]. Taiyuan: Taiyuan Science and Technology, 2010.)

    11. [11]

      [11] 战书鹏, 王兴军, 洪冰清, 于广锁, 王辅臣. 褐煤催化加氢气化实验[J]. 燃料化学学报, 2012, 40(1): 8-14. (ZHAN Shu-peng, WANG Xing-jun, HONG Bing-qing, YU Guang-suo, WANG Fu-chen. Experimental study on catalytic hydrogasification of lignite[J]. Journal of Fuel Chemistry and Technology, 2012, 40(1): 8-14.)

    12. [12]

      [12] 林荣英, 张济宇. 高变质程度无烟煤热天平水蒸气催化气化动力学碳酸钠催化剂[J]. 化工学报, 2006, 57(10): 2309-2318. (LIN Rong-yu, ZHANG Ji-yu. Catalytic gasification kinetics of high metamorphosed anthracites by steam in thermogravity (I) with sodium carbonate as catalyst[J]. Journal of Chemical Industry and Engineering (China), 2006, 57(10): 2309-2318.)

    13. [13]

      [13] WANG J, KAKANISHI K, SAITO I. High-yield hydrogen production by steam gasification of hypercoal (ash-free coal extract) with potassium carbonate: Comparison with raw coal[J]. Energy Fuels, 2005, 19(5): 2114-2120.

    14. [14]

      [14] HUHN F, KLEIN J, JUNTGEN H. Investigations on the alkali-catalysed steam gasification of coal: Kinetics and interactions of alkali catalyst with carbon[J]. Fuel, 1983, 62(2): 196-199.

    15. [15]

      [15] SHARMA A, KAWASHIMA H, SAITO I, TAKANOHASHI T. Structural characteristics and gasification reactivity of chars prepared from K2CO3 mixed hypercoals and coals[J]. Energy Fuels, 2009, 23(4): 1888-1895.

  • 加载中
    1. [1]

      Haiyu Nie Chenhui Zhang Fengpei Du . Ideological and Political Design for the Preparation, Characterization and Particle Size Control Experiment of Nanoemulsion. University Chemistry, 2024, 39(2): 41-46. doi: 10.3866/PKU.DXHX202306055

    2. [2]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    3. [3]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    4. [4]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    5. [5]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    6. [6]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    7. [7]

      Changyan Sun Hualei Zhou Bin Dong . Application of “PBL” Teaching Mode in Inorganic Chemistry Experimental Education in the Perspective of Course Ideology and Politics: Taking Preparation of Manganese Carbonate as an Example. University Chemistry, 2024, 39(11): 378-383. doi: 10.12461/PKU.DXHX202402016

    8. [8]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    9. [9]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    10. [10]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    11. [11]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    12. [12]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    13. [13]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    14. [14]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    15. [15]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    16. [16]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    17. [17]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    18. [18]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    19. [19]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    20. [20]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

Metrics
  • PDF Downloads(0)
  • Abstract views(338)
  • HTML views(16)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return