Citation: ZHANG Jun-wei, HUANG Jie-jie, FANG Yi-tian, WANG Zhi-qing, YU Zhong-liang. Partial oxidation reforming of methane to synthesis gas by chemical-looping using CeO2-modified Fe2O3 as oxygen carrier[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(2): 158-165. shu

Partial oxidation reforming of methane to synthesis gas by chemical-looping using CeO2-modified Fe2O3 as oxygen carrier

  • Corresponding author: HUANG Jie-jie, 
  • Received Date: 23 July 2013
    Available Online: 9 September 2013

    Fund Project: 中国科学院战略性先导科技专项(XDA07050100) (XDA07050100)山西省青年科技研究基金(2013021007-2) (2013021007-2)

  • The CeO2/Fe2O3 oxygen carriers were prepared by co-precipitation method and their characterization was carried out using X-ray diffraction (XRD) and scanning electron microscope (SEM). The partial oxidation reforming of methane was tested in a fixed-bed at different operating conditions. The temperature programming results show that 30% CeO2-modified Fe2O3 has rather better effect than pure Fe2O3; the conversion of CH4, the selectivity of H2 and CO are greatly improved. Same results have been observed in isothermal experiments. As the reaction time is less than 1 200 s, there is no carbon deposit formed. After 15 cycles, 30% CeO2-modified Fe2O3 has the best cycling performance at 850 ℃ and the reaction time of 945 s. The conversion of CH4 reaches to 91.53%, the selectivity of H2 and CO reach to 86.36% and 85.12%, respectively and the H2/CO mol ratio in syngas is 2.03. The species of substance in oxygen carriers has no obvious change after 15 cycles.
  • 加载中
    1. [1]

      [1] 刘黎明, 赵海波, 郑楚光. 化学链燃烧方式中氧载体的研究进展[J]. 煤炭转化, 2006, 29(3): 83-93. (LIU Li-ming, ZHAO Hai-po, ZHENG Chu-guang. The development of oxygen carrier in chemical-looping combustion[J]. Coal Conversion, 2006, 29(3): 83-93.)

    2. [2]

      [2] 禇洪岭, 王桂枝, 龚凡, 杨玉和.制氢工艺技术经济与新技术[J]. 化工技术经济, 2005, 23(9): 36-40. (ZHU Hong-ling, WANG Gui-zhi, GONG Fan, YANG Yu-he. Economy of hydrogenproduction technology economy and new technology[J]. Chemical Techno-Economics, 2005, 23(9): 36-40.)

    3. [3]

      [3] 刘少文, 吴广义. 制氢技术现状及展望[J]. 贵州化工, 2003, 28(5): 4-9. (LIU Shao-wen, WU Guang-yi. Status of hydrogen production technology and development[J]. Guizhou Chemical Industry, 2003, 28(5): 4-9.)

    4. [4]

      [4] 魏国强, 何方, 黄振, 赵坤, 李新爱, 李海滨. 化学链燃烧技术的研究进展[J]. 化工进展, 2012, 31(4): 713-725. (WEI Guo-qiang, HE Fang, HUANG Zhen, ZHAO Kun, LI Xin-ai, LI Hai-bin. Research development in chemical-looping combustion[J]. Chemical Industry and Engineering Progress, 2012, 31(4): 713-725.)

    5. [5]

      [5] MAGNUS R, ANDERS L, TOBIAS M. Synthesis gas generation by chemical-looping reforming in a continuously operating laboratory reactor[J]. Fuel, 2006, 85(12/13): 1631-1641.

    6. [6]

      [6] LUIS F D, MARÍA O, FRANCISCO G L, JUAN A, ALBERTO A, PILAR G. Synthesis gas generation by chemical-looping reforming using a Ni based oxygen carrier[J]. Energy Procedia, 2009, 1(1): 3-10.

    7. [7]

      [7] LUIS F D, MARÍA O, FRANCISCO G L, JUAN A, ALBERTO A, PILAR G. Synthesis gas generation by chemical-looping reforming in a batch fluidized bed reactor using Ni-based oxygen carriers[J]. Chem Eng J, 2008, 144(2): 289-298.

    8. [8]

      [8] FRANCOIS X C, GREGORY S P, SÉBASTIEN R. Hydrogen production through chemical looping using NiO/NiAl2O4 as oxygen carrier[J]. Chem Eng Sci, 2011, 66(24): 6324-6330.

    9. [9]

      [9] QAMAR Z, TOBIAS M, BORJE G. Integrated hydrogen and power production with CO2 capture using chemical-looping reformings redox reactivity of particles of CuO, Mn2O3, NiO, and Fe2O3 using SiO2 as a support[J]. Ind Eng Chem Res, 2005, 44(10): 3485-3496.

    10. [10]

      [10] RYDÉN M, MEHDI A. Continuous hydrogen production via the steam-iron reaction by chemical looping in a circulating fluidized-bed reactor[J]. Int J Hydrogen Energy, 2012, 37(6): 4843-4854.

    11. [11]

      [11] MARÍA O, PILAR G, LUIS F D, FRANCISCO G L, ALBERTO A. Hydrogen production with CO2 capture by coupling steam reforming of methane and chemical-looping combustion: Use of an iron-based waste product as oxygen carrier burning a PSA tail gas[J]. J Power Sources, 2011, 196(9): 4370-4381.

    12. [12]

      [12] BEATRÍZ M C, JOSÉ M P. Titania-supported iron oxide as oxygen carrier for chemical-looping combustion of methane[J]. Fuel, 2007, 86(1/2): 113-122.

    13. [13]

      [13] 李孔斋, 王华, 魏永刚, 刘明春. 铈基复合氧化物中晶格氧用于甲烷部分氧化制合成气[J]. 燃料化学学报, 2008, 36(1): 83-88. (LI Kong-zhai, WANG Hua, WEI Yong-gang, LIU Ming-chun. Partial oxidation of methane to syngas using lattice oxygen from ceria-beased complex oxides oxygen carriers[J]. Journal of Fuel Chemistry and Technology, 2008, 36(1): 83-88.)

    14. [14]

      [14] 李孔斋, 王华, 魏永刚, 敖先权, 刘明春. 晶格氧部分氧化甲烷制合成气[J]. 化学进展, 2008, 20(9): 1306-1314. (LI Kong-zhai, WANG Hua, WEI Yong-gang, AO Xian-quan, LIU Ming-chun. Partial oxidation of methane to synthesis gas using lattice oxygen[J]. Progress in Chemistry, 2008, 20(9): 1306-1314.)

    15. [15]

      [15] 魏永刚, 王华, 敖先权, 张翅飞. CeO2中晶格氧直接部分氧化甲烷制取合成气的研究[J]. 材料与冶金学报, 2008, 7(1): 63-68. (WEI Yong-gang, WANG Hua, AO Xian-quan, ZHANG Chi-fei. Direct partial oxidation of methane to syngas by lattice oxygen of cerium oxide[J]. Journal of Materials and Metallurgy, 2008, 7(1): 63-68.)

    16. [16]

      [16] ZHU X, WANG H, WEI Y G, KONGZHAI L, CHENG X M. Reaction characteristics of chemical-looping steam methane reforming over a Ce-ZrO2 solid solution oxygen carrier[J]. Mendeleev Commun, 2011, 21(4): 221-223.

    17. [17]

      [17] KANG S G, SUNG R S, SANG D K, KYOUNG S K, CHU S P. Hydrogen production from two-step steam methane reforming in a fluidized bed reactor[J]. Int J Hydrogen Energy, 2009, 34(3): 1301-1309.

    18. [18]

      [18] KODAMA T, SHIMIZU T, SATOH T, NAKATA M, SHIMIZU K I. Stepwise production of CO-rich syngas and hydrogen via solar methane reforming by using a Ni(Ⅱ)-ferrite redox system[J]. Solar Energy, 2002, 73(5): 363-374.

    19. [19]

      [19] LORI N, ANTIGONI E, VASSILIS Z. La1-xSrxMyFe1-yO3-δ perovskites as oxygen-carrier materials for chemical-looping reforming[J]. Int J Hydrogen Energy, 2011, 36(11): 6657-6670.

    20. [20]

      [20] MURRAY E P, TSAI T, BARNETT S A. BARNETT. A direct-methane fuel cell with a ceria-based anode[J]. Nature, 1999, 400(6745): 649-651.

    21. [21]

      [21] VLADIMIR V G, HILDE P, VITALIY B, CHRISTOPHE D, GUY B M. CeO2-Modified Fe2O3 for CO2 utilization via chemical looping[J]. Ind Eng Chem Res, 2013, 52(25): 8416-8426.

    22. [22]

      [22] 代小平, 余长春. 氧载体的氧物种直接氧化甲烷制合成气[J]. 化学进展, 2009, 21(7/8): 1626-1635. (DAI Xiao-ping, YU Chang-chun. Direct partial oxidation of methane to synthesis gas using oxygen carriers in the absence of gaseous oxygen[J]. Progress in Chemistry, 2009, 21(7/8): 1626-1635.)

    23. [23]

      [23] QIAO D S, LU G Z, LIU X H, GUO Y, WANG Y Q, GUO Y L. Preparation of Ce1-xFexO2 solid solution and its catalytic performance for oxidation of CH4 and CO[J]. J Mater Sci, 2011, 46(10): 3500-3506.

    24. [24]

      [24] LI H F, LU G Z, WANG Y Q, GUO Y, GUO Y L. Synthesis of flower-like La or Pr-doped mesoporous ceria microspheres and their catalytic activities for methane combustion[J]. Catal Commun, 2010, 11(11): 946-950.

  • 加载中
    1. [1]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    2. [2]

      Shanying Chen Kangning Huo Ke Qi Jingyi Li Shuxin Li Yunchao Li . A Novel Colloid Electrophoresis Experiment with the Characteristics of Resource Recycling and Inquiry-Driven Experimental Design. University Chemistry, 2024, 39(5): 274-286. doi: 10.3866/PKU.DXHX202311067

    3. [3]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    4. [4]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    5. [5]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    6. [6]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    7. [7]

      Jie WUZhihong LUOXiaoli CHENFangfang XIONGLi CHENBiao ZHANGBin SHIQuansheng OUYANGJiaojing SHAO . Critical roles of AlPO4 coating in enhancing cycling stability and rate capability of high voltage LiNi0.5Mn1.5O4 cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 948-958. doi: 10.11862/CJIC.20240400

    8. [8]

      Xiaomei Ning Liang Zhan Xiaosong Zhou Jin Luo Xunfu Zhou Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085

    9. [9]

      Guowen Xing Guangjian Liu Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058

    10. [10]

      Hongyan Chen Yajun Hou Shui Hu Zhuoxun Wei Fang Zhu Chengyong Su . Construction of Synthetic Chemistry Experiment of the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 58-63. doi: 10.12461/PKU.DXHX202409109

    11. [11]

      Gonglan Ye Xia Yin Feng Xu Peng Yang Yingpeng Wu Huilong Fei . Innovations in “Four-in-One” Inorganic Chemistry Education. University Chemistry, 2024, 39(8): 136-141. doi: 10.3866/PKU.DXHX202401071

    12. [12]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    13. [13]

      Jinfeng Chu Yicheng Wang Ji Qi Yulin Liu Yan Li Lan Jin Lei He Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105

    14. [14]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    15. [15]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    16. [16]

      Yuan GAOYiming LIUChunhui WANGZhe HANChaoyue FANJie QIU . A hexanuclear cerium oxo cluster stabilized by furoate: Synthesis, structure, and remarkable ability to scavenge hydroxyl radicals. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 491-498. doi: 10.11862/CJIC.20240271

    17. [17]

      Chengbin Gong Guona Zhang Qian Tang Hong Lei Ling Kong Wenshan Ren . Development of a Practical Teaching System for the Applied Chemistry Major Emphasizing “Industry-Education Integration, University-Enterprise Cooperation, and Multi-Dimensional Combination”. University Chemistry, 2024, 39(6): 220-225. doi: 10.3866/PKU.DXHX202309104

    18. [18]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    19. [19]

      Cunming Yu Dongliang Tian Jing Chen Qinglin Yang Kesong Liu Lei Jiang . Chemistry “101 Program” Synthetic Chemistry Experiment Course Construction: Synthesis and Properties of Bioinspired Superhydrophobic Functional Materials. University Chemistry, 2024, 39(10): 101-106. doi: 10.12461/PKU.DXHX202408008

    20. [20]

      Renqing Lü Shutao Wang Fang Wang Guoping Shen . Computational Chemistry Aided Organic Chemistry Teaching: A Case of Comparison of Basicity and Stability of Diazine Isomers. University Chemistry, 2025, 40(3): 76-82. doi: 10.12461/PKU.DXHX202404119

Metrics
  • PDF Downloads(0)
  • Abstract views(352)
  • HTML views(26)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return