Citation: LI Mei, YANG Jun-he, ZHANG Qi-feng, XIA Hong-bo, CHANG Hai-zhou, SUN Hui. Structure change and organic sulfur forms transformation during pyrolysis of high-sulfur vitrinite[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(2): 138-145. shu

Structure change and organic sulfur forms transformation during pyrolysis of high-sulfur vitrinite

  • Corresponding author: YANG Jun-he, 
  • Received Date: 21 June 2013
    Available Online: 6 September 2013

    Fund Project: 国家自然科学基金(21276156)。 (21276156)

  • High purity vitrinite was separated and concentrated from New Zealand(NXL; St,ad=1.84%) and Shanxi(SX; St,ad=1.80%) coal which have similar sulfur content. The vitrinite was pyrolyzed in a tube furnace reactor under argon at 300, 500, 700 and 1 000 ℃. The effect of temperature on the functional group content and organic sulfur forms transformation was examined by Fourier transform infrared spectrum and X-ray photoelectron spectrum, respectively. The FT-IR experiments show that aliphatic hydrogen content in SX vitrinite and its reactivity is higher than those of NXL vitrinite at same temperature. The aliphatic hydrogen in both vitrinites decreases with increasing temperature. The aliphatic hydrogen content in SX and NXL vitrinite is unchanged when the temperature is above 500 and 700 ℃, respectively. The aromatic hydrogen increases first and then decreases with increasing temperature. The XPS results show that the organic sulphide, which is more thermal unstable, is richer on surface of SX vitrinite than that of NXL. It is decomposed completely below 300 and 700 ℃ for SX and NXL, respectively. The content of thiophenic compounds increases with increasing temperature, but that of sulfones compounds is just the reverse.
  • 加载中
    1. [1]

      [1] 周师庸, 赵俊国. 炼焦煤性质与高炉焦炭质量[M]. 北京: 冶金工业出版社, 2008: 36-37. (ZHOU Shi-yong, ZHAO Jun-guo. Properties of coking coal and quality of coke for the blast furnace[M]. Beijing: Metallurgical Industry Press, 2008: 36-37.)

    2. [2]

      [2] 孙成功, 李保庆. 煤中有机硫形态结构和热解过程硫变迁特性的研究[J]. 燃料化学学报, 1997, 25(4): 358-362. (SUN Cheng-gong, LI Bao-qing. Characterization of organic sulfur forms in some Chinese coals by high pressure TPR and sulfur transfer during hydropyrolysis[J]. Journal of Fuel Chemistry and Technology, 1997, 25(4): 358-362.)

    3. [3]

      [3] 陈 鹏. 用XPS研究兖州煤各显微组分中有机硫存在形态[J]. 燃料化学学报, 1997, 25(3): 238-241. (CHEN Peng. Application of XPS in study forms of organic sulfur in macerals of Yanzhou coal[J]. Journal of Fuel Chemistry and Technology, 1997, 25(3): 238-241.)

    4. [4]

      [4] 张代林, 李伟锋, 曾涛, 郑明东, 王培珍. 炼焦煤的热解过程研究[J]. 煤炭学报, 2012, 37(2): 323-327. (ZHANG Dai-lin, LI Wei-feng, ZENG Tao, ZHENG Ming-dong, WANG Pei-zhen. Study on pyrolyzing process of coking coals[J]. Journal of China Coal Society, 2012, 37(2): 323-327.)

    5. [5]

      [5] KELEMEN S R, GORBATY M L, GEORGE G N, KWIATEK P J, SANSONE M. Thermal reactivity of sulphur forms in coal[J]. Fuel, 1991, 70(3): 396-402.

    6. [6]

      [6] WALKER R, MASTALERZ M. Functional group and individual maceral chemistry of high volatile bituminous coals from southern Indiana: Controls on coking[J]. Int J Coal Geol, 2004, 58(3): 181-191.

    7. [7]

      [7] PIETRZAK R, GRZYBEK T, WACHOWSKA H. XPS study of pyrite-free coals subjected to different oxidizing agents[J]. Fuel, 2007, 86(16): 2616-2624.

    8. [8]

      [8] KELEMEN S R, GEORGE G N, GORBATY M L. Direct determination and quantification of sulphur forms in heavy petroleum and coals: 1.The X-ray photoelectron spectroscopy (XPS) approach[J]. Fuel, 1990, 69(8): 939-944.

    9. [9]

      [9] KOZLOWSKI M. XPS study of reductively and non-reductively modified coals[J]. Fuel, 2004, 83(3): 259-265.

    10. [10]

      [10] CERNY J. Structural dependence of CH bond absorptivities and consequences for FT-IR analysis of coals[J]. Fuel, 1996, 75(11): 1301-1306.

    11. [11]

      [11] IBARRA J V, BONET A J, MOLINER R. Release of volatile sulfur compounds during low temperature pyrolysis of coal[J]. Fuel, 1994, 73(6): 933-939.

    12. [12]

      [12] MACHNIKOWSKA H, KRZTON A, MACHNIKOWSKI J. The characterization of coal macerals by diffuse reflectance infrared spectroscopy[J]. Fuel, 2002, 81(2): 245-252.

    13. [13]

      [13] 常海洲, 曾凡桂, 李文英, 李军, 贾建波, 谢克昌. 西北地区侏罗纪煤显微组分结构的Micro-FTIR研究[J]. 光谱学与光谱分析, 2008, 28(7): 1535-1538. (CHANG Hai-zhou, ZENG Fan-gui, LI Wen-ying, LI Jun, JIA Jian-bo, XIE Ke-chang. Micro-FTIR study on structure of macerals from Jurassic coals in northwestern China[J]. Spectroscopy and Spectral Analysis, 2008, 28(7): 1535-1538.)

    14. [14]

      [14] WANG M J, HU Y F, WANG J C, CHANG L P, WANG H. Transformation of sulfur during pyrolysis of inertinite-rich coals and correlation with their characteristics[J]. J Anal Appl Pyrolysis, 2013, 104: 585-592.

    15. [15]

      [15] BROWN J R, KASRAI M, BANCROFT G M, TAN K H, GHEN J M. Direct identification of organic sulphur species in Rasa coal from sulphur L-edge X-ray absorption near-edge spectra[J]. Fuel, 1992, 71(6): 649-653.

    16. [16]

      [16] PIETRZAK R, WACHOWSKA H. The influence of oxidation with HNO3 on the surface composition of high-sulphur coals: XPS study[J]. Fuel Process Technol, 2006, 87(11): 1021-1029.

    17. [17]

      [17] MARINOV S P, TYULIEV G, STEFANOVA M, CARLEER R, YPERMAN J. Low rank coals sulphur functionality study by AP-TPR/TPO coupled with MS and potentiometric detection and by XPS[J]. Fuel Process Technol, 2004, 85(4): 267-277.

    18. [18]

      [18] 闫金定. 炭载含硫化合物热解行为的研究[D]. 太原: 中国科学院山西煤炭化学研究所, 2005. (YAN Jin-ding. Behavior of sulfur transformation during pyrolysis of sulfur model compounds on carbon support[D]. Taiyuan: Institute of Coal Chemistry, Chinese Academy of Sciences, 2005.)

    19. [19]

      [19] 刘艳华. 煤中氮/硫的赋存形态及其变迁规律研究[D]. 西安: 西安交通大学, 2002. (LIU Yan-hua. An investigation on the forms and the fates of coal nitrogen/sulfur functionalities[D]. Xi'an: Xi'an Jiaotong University, 2002.)

    20. [20]

      [20] HU H Q, ZHOU Q, ZHU S W, MEYER B, KRZACK S, CHEN G H. Product distribution and sulfur behavior in coal pyrolysis[J]. Fuel Process Technol, 2004, 85(8/10): 849-861.

    21. [21]

      [21] LIU F R, LI W, CHEN H K, LI B Q. Uneven distribution of sulfurs and their transformation during coal pyrolysis[J]. Fuel, 2007, 86(3): 360-366.

  • 加载中
    1. [1]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    2. [2]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    3. [3]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    4. [4]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    5. [5]

      Feng Sha Xinyan Wu Ping Hu Wenqing Zhang Xiaoyang Luan Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082

    6. [6]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    7. [7]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    8. [8]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    9. [9]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    10. [10]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    11. [11]

      Bin HEHao ZHANGLin XUYanghe LIUFeifan LANGJiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161

    12. [12]

      Xiaofang DONGYue YANGShen WANGXiaofang HAOYuxia WANGPeng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388

    13. [13]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    14. [14]

      Lina Feng Guoyu Jiang Xiaoxia Jian Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171

    15. [15]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    16. [16]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    17. [17]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    18. [18]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    19. [19]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    20. [20]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

Metrics
  • PDF Downloads(0)
  • Abstract views(475)
  • HTML views(26)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return