Citation:
LIANG Hu-zhen, WANG Chuan-ge, ZENG Fan-gui, LI Mei-fen, XIANG Jian-hua. Effect of demineralization on lignite structure from Yinmin coalfield by FT-IR investigation[J]. Journal of Fuel Chemistry and Technology,
;2014, 42(2): 129-137.
-
The raw coal and demineralized coal obtained from Yimin lignite were studied by Fourier transform infrared spectroscopy (FT-IR) with curve-fitting analysis to obtain the structure change information after demineralization. The results show that demineralization has little effect on aliphatic hydrogen and hydroxyl. The absorption intensity of CH2 asymmetric stretching vibration changed little, that of CH stretching vibration decreases, and that of CH2 symmetric stretching vibration and CH3 asymmetric stretching vibration increases. The absorption intensity of OH-N, OH-OH and OH-π hydrogen bonds decreases and that of ring hydroxyl and OH-O intensity increases. Demineralization has great effect on aromatic structures and oxygen-containing groups. Aromatic structures change from three hydrogens per ring dominating to three and four hydrogens per ring dominates. The absorption intensity of alkyl ether and aliphatic carboxylic acids decreases significantly after demineralization, which may be caused by hydrolysis reaction. The absorption intensity of phenolic hydroxyl and carboxylic acids increases greatly after demineralization.
-
Keywords:
- raw coal,
- demineralized coal,
- FT-IR,
- coal structure
-
-
-
[1]
[1] KARR C, JR E D. Analytical methods for coal and coal products[M]. Academic Press: New York, 1978: 11.
-
[2]
[2] SUGANO M, MASHIMO K, WAINAI T. Structural changes of lower rank coals by cation exchange[J]. Fuel, 1999, 78(8): 945-951.
-
[3]
[3] LARSEN J W, PAN C S, SHAWVER S. Effect of demineralization on the macromolecular structure of coals[J]. Energy Fuels, 1989, 3(5): 557-561.
-
[4]
[4] AlEMANY L B, GRANT D M, PUGMIRE R J, STOCK LM. Solid state magnetic resonance spectra of Illinois No. 6 coal and some reductive alkylation products[J]. Fuel, 1984, 63(4): 513-521.
-
[5]
[5] 吴奇虎, 杨煌. 煤的组成结构[J]. 化学通报, 1989, (2): 12-17. (WU Qi-hu, YANG Huang. The constitute and structure of coal[J]. Chemistry, 1989, (2): 12-17.)
-
[6]
[6] IBARRA J, MUOZ E, MOLINER R. FTIR study of the evolution of coal structure during the coalification process[J]. Org Geochem, 1996, 24(6/7): 725-735.
-
[7]
[7] WANG S Q, TANG Y G, SCHOBERT H H, GUO Y N, SU Y F. FTIR and 13C NMR Investigation of coal component of late permian coals from southern China[J]. Energy Fuels, 2011, 25(12): 5672-5677.
-
[8]
[8] PAINTER P C, COLEMAN M M, JENKINS R G, WALKER Jr P L. Fourier transform infrared study of acid-demineralized coal[J]. Fuel, 1978, 57(2): 125-126.
-
[9]
[9] PAINTER P C, COLEMAN M M, JENKINS R G, WHANG P W, WALKER Jr P L. Fourier transform infrared study of mineral matter in coa. A novel method for quantitative mineralogical analysis[J]. Fuel, 1978, 57(6): 337-344.
-
[10]
[10] PAINTER P C, SNYDER R W, STARSINIC M M, COLEMAN M M, KUEHN D W, DAVIS A. Concerning the application of FT-infrared to the study of coal: A critical assessment of band assignments and the application of spectral analysis programs[J]. Appl Spectrosc, 1981, 35(5): 475-485.
-
[11]
[11] IGLESIAS M J, JIMÉNEZ A, LAGGOUN-DEFARGE F, SUAREZ-RUIZ I. FTIR study of pure vitrains and associated coals[J]. Energy Fuels, 1995, 9(3): 458-466.
-
[12]
[12] IGLESIAS M J, DELRIO J C, LAGGOUN-DEFARGE F, CUESTA M J, SUAREZ-RUIZ I. Control of the chemical structure of perhydrous coals; FTIR and Py-GC/MS investigation[J]. J Anal Appl Pyrolysis, 2002, 62(1): 1-34.
-
[13]
[13] WANG S Q, TANG Y G, SCHOBERT H H, GUO Y N, GAO W C, LU X K. FTIR and simultaneous TG/MS/FTIR study of late permian coals from southern China[J]. J Anal Appl Pyrolysis, 2013, 100(3): 75-80.
-
[14]
[14] 朱学栋, 朱子彬, 韩崇家, 张成芳. 煤中含氧官能团的红外光谱定量分析[J]. 燃料化学学报, 1999, 27(4): 335-339. (ZHU Xue-dong, ZHU Zi-bin, HAN Chong-jia, ZHANG Cheng-fang. Quantitative determination of oxygen-containing functional group in coal by FTIR spectroscopy[J]. Journal of Fuel Chemistry and Technology, 1999, 27(4): 335-339.)
-
[15]
[15] 朱学栋, 朱子彬. 红外光谱定量分析煤中脂肪碳和芳香碳[J]. 曲阜师范大学学报, 2001, 27(4): 64-67. (ZHU Xue-dong, ZHU Zi-bin. Quantitative determination of aromatic-and aliphatic-CH by IR spectroscopy[J]. Journal of Qufu Normal University, 2001, 27(4): 64-67.)
-
[16]
[16] 张卫, 曾凡桂.中等变质程度煤中羟基的红外光谱分析[J].太原理工大学学报, 2005, 36(5): 545-548. (ZHANG Wei, ZENG Fan-gui. FTIR analysis of hydrogen bond in middle maturate coals[J]. Journal of Taiyuan University of Technology, 2005, 36(5): 545-548.)
-
[17]
[17] GENG W, NAKAJIMA T, TAKANASHI, OHKI A. Analysis of carboxyl group in coal and coal aromaticity by fourier transform infrared(FT-IR) spectrometry[J]. Fuel, 2009, 88(1): 139-144.
-
[18]
[18] OPAPRAKASIT P, SCARONI A, PAINTER P C. Ionomer-like structure and π-cation interactions in argonne premium coals[J]. Energy Fuels, 2002, 16(3): 543-551.
-
[19]
[19] 梁虎珍, 曾凡桂, 李美芬, 相建华. 镧系收缩效应对稀土-煤相互作用的影响及煤中有机态稀土的赋存形式[J]. 燃料化学学报, 2013, 9(41): 1030-1040. (LIANG Hu-zhen, ZENG Fan-gui, LI Mei-fen, XIANG Jian-hua. Influence of lanthanide contraction effect on the interaction of REE and coal and the occurrence forms of organic rare earth element in coals[J]. Journal of Fuel Chemistry and Technology, 2013, 9(41): 1030-1040.)
-
[20]
[20] PAINTER P C, OPAPRAKASIT P, SCARONI A. Ionomers and the structure of coal[J]. Energy Fuels, 2000, 149(5): 1115-1118.
-
[21]
[21] 周志玲. 低煤阶煤及不同化学组分热解甲烷和氢气的生成特征与机理[D]. 太原: 太原理工大学, 2010. (ZHOU Zhi-ling. Evolution kinetics and mechanisms of methane and hydrogen from low rank coal and different chemical components[D]. Taiyuan: University of Technology, 2010.)
-
[22]
[22] 冯杰, 李文英, 谢克昌. 傅立叶红外光谱法对煤结构的研究[J]. 中国矿业大学学报, 2002, 5(31): 362-366. (FENG Jie, LI Wen-ying, XIE Ke-chang. Research on coal structure using FT-IR[J]. Journal of China University of Mining & Technology, 2002, 5(31): 362-366.)
-
[23]
[23] POURRET O, DAVRANCHE M, GRUAU G, DIA A. Rare earth elements complexation with humic acid[J]. Chem Geol, 2007, 243(1/2): 128-141.
-
[24]
[24] 梁虎珍, 曾凡桂, 相建华, 李美芬. 伊敏褐煤中微量元素的地球化学特征及其无机-有机亲和性分析[J]. 燃料化学学报, 2013, 10(41): 1173-1183. (LIANG Hu-zhen, ZENG Fan-gui, XIANG Jian-hua, LI Mei-fen. Geochemical characteristics and inorganic-organicaffinity of the trace elements inYimin lignite[J]. Journal of Fuel Chemistry and Technology, 2013, 10(41): 1173-1183.)
-
[25]
[25] SWAINE D. The organic association of elements in coal[J]. Org Geochem, 1992, 18(3): 259-261.
-
[26]
[26] DOMAZETIS G, JAMES B. Molecular models of brown coal containing inorganic species[J].Org Geochem, 2006, 37(2): 244-259.
-
[27]
[27] WIJAYA N, ZHANG L. A critical review of coal demineralization and its implication on understanding the speciation of organically bound metals and submicrometer mineral grains in coal[J]. Energy Fuels, 2011, 25(1): 1-16.
-
[28]
[28] 李东涛, 李文, 李保庆. 煤中氢键研究的新进展[J]. 化学通报, 2001, (7): 411-415. (LI Dong-tao, LI Wen, LI Bao-qing. Hydrogen bonds of coal[J]. Chemistry, 2001, (7): 411-415.)
-
[1]
-
-
-
[1]
Yang Wang , Yunpeng Fu , Xiaoji Liu , Guotao Zhang , Guobin Li , Wanqiang Liu , Jinglun Wang . Structural Analysis of Nitrile Solutions Based on Infrared Spectroscopy Probes. University Chemistry, 2025, 40(4): 367-374. doi: 10.12461/PKU.DXHX202406113
-
[2]
Mengyao Shi , Kangle Su , Qingming Lu , Bin Zhang , Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105
-
[3]
Liang MA , Honghua ZHANG , Weilu ZHENG , Aoqi YOU , Zhiyong OUYANG , Junjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075
-
[4]
Zhongyan Cao , Youzhi Xu , Menghua Li , Xiao Xiao , Xianqiang Kong , Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017
-
[5]
Ping Song , Nan Zhang , Jie Wang , Rui Yan , Zhiqiang Wang , Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087
-
[6]
Yan Liu , Yuexiang Zhu , Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084
-
[7]
Zitong Chen , Zipei Su , Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054
-
[8]
Wen-Bing Hu . Systematic Introduction of Polymer Chain Structures. University Chemistry, 2025, 40(4): 15-19. doi: 10.3866/PKU.DXHX202401014
-
[9]
Hao Wu , Zhen Liu , Dachang Bai . 1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020
-
[10]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[11]
Haitang WANG , Yanni LING , Xiaqing MA , Yuxin CHEN , Rui ZHANG , Keyi WANG , Ying ZHANG , Wenmin WANG . Construction, crystal structures, and biological activities of two LnⅢ3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188
-
[12]
Dongju Zhang . Exploring the Descriptions and Connotations of Basic Concepts of Teaching Crystal Structures. University Chemistry, 2024, 39(3): 18-22. doi: 10.3866/PKU.DXHX202304003
-
[13]
Weina Wang , Fengyi Liu , Wenliang Wang . “Extracting Commonality, Delving into Typicals, Deriving Individuality”: Constructing a Knowledge Graph of Crystal Structures. University Chemistry, 2024, 39(3): 36-42. doi: 10.3866/PKU.DXHX202308029
-
[14]
Ji Qi , Jianan Zhu , Yanxu Zhang , Jiahao Yang , Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050
-
[15]
Wenyan Dan , Weijie Li , Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060
-
[16]
Junqiao Zhuo , Xinchen Huang , Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100
-
[17]
Hongwei Ma , Hui Li . Three Methods for Structure Determination from Powder Diffraction Data. University Chemistry, 2024, 39(3): 94-102. doi: 10.3866/PKU.DXHX202310035
-
[18]
Yanxin Wang , Hongjuan Wang , Yuren Shi , Yunxia Yang . Application of Python for Visualizing in Structural Chemistry Teaching. University Chemistry, 2024, 39(3): 108-117. doi: 10.3866/PKU.DXHX202306005
-
[19]
Guoxian Zhu , Jing Chen , Rongkai Pan . Enhancing the Teaching Quality of Atomic Structure: Insights and Strategies. University Chemistry, 2024, 39(3): 376-383. doi: 10.3866/PKU.DXHX202305027
-
[20]
Xuyang Wang , Jiapei Zhang , Lirui Zhao , Xiaowen Xu , Guizheng Zou , Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(370)
- HTML views(21)