Citation: Hamzeh Kiyani, Maryam Ghiasi. Potassium phthalimide: An efficient and green organocatalyst for the synthesis of 4-aryl-7-(arylmethylene)-3, 4, 6, 7-tetrahydro-1Hcyclopenta[d]pyrimidin-2(5H)-ones/thiones under solvent-free conditions[J]. Chinese Chemical Letters, ;2014, 25(2): 313-316. shu

Potassium phthalimide: An efficient and green organocatalyst for the synthesis of 4-aryl-7-(arylmethylene)-3, 4, 6, 7-tetrahydro-1Hcyclopenta[d]pyrimidin-2(5H)-ones/thiones under solvent-free conditions

  • Corresponding author: Hamzeh Kiyani, 
  • Received Date: 11 July 2013
    Available Online: 6 November 2013

  • An efficient synthesis of Biginelli-type compounds using potassium phthalimide as a green, mild, and commercially available organocatalyst in a one-pot, multi-component cyclocondensation reaction of cyclopentanone, aldehydes, and urea/thiourea is reported. The present methodology is a green approach to access 4-aryl-7-(arylmethylene)-3,4,6,7-tetrahydro-1H-cyclopenta[d]pyrimidin-2(5H)-ones/thiones. It offers several merits such as simple operational procedures, no use of hazardous organic solvents, and cheap and environmentally friendly solid basic catalyst.
  • 加载中
    1. [1]

      [1] T.U. Mayer, T.M. Kapoor, S.J. Haggarty, et al., Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen, Science 286 (1999) 971-974.

    2. [2]

      [2] Z. Maliga, T.M. Kapoor, T.J. Mitchison, Evidence that monastrol is an allosteric inhibitor of the mitotic kinesin Eg5, Chem. Biol. 9 (2002) 989-996.

    3. [3]

      [3] J.C. Barrow, P.G. Nantermet, H.G. Selnick, et al., In vitro and in vivo evaluation of dihydropyrimidinone C-5 amides as potent and selective alpha1A receptor antagonists for the treatment of benign prostatic hyperplasia, J. Med. Chem. 43 (2000) 2703-2718.

    4. [4]

      [4] C. Goldstein, J.C. Schroeder, J.P. Fortin, et al., Two naturally occurring mutations in the type 1 melanin-concentrating hormone receptor abolish agonist-induced signaling, J. Pharm. Exp. Ther. 335 (2010) 799-806.

    5. [5]

      [5] K.S. Atwal, B.N. Swanson, S.E. Unger, et al., Dihydropyrimidine calcium channel blockers. 3,3-carbamoyl-4-aryl-1,2,3,4-tetrahydro-6-methyl-5-pyrimidinecarbox- ylic acid esters as orally effective antihypertensive agents, J. Med. Chem. 34 (1991) 806-811.

    6. [6]

      [6] M. Matache, C. Dobrota, N.D. Bogdan, et al., Synthesis of fused dihydro-pyrimido[4, 3-d]coumarins using Biginelli multicomponent reaction as key step, Tetrahedron 65 (2009) 5949-5957.

    7. [7]

      [7] Y.X. Da, Z. Zhang, Z.J. Quan, Intermolecular cyclocondensation reaction of 3,4- dihydropyrimidine-2-thione under the Mitsunobu reaction conditions, Chin. Chem. Lett. 22 (2011) 679-682.

    8. [8]

      [8] T.N. Akhaja, J.P. Raval, Design, synthesis, in vitro evaluation of tetrahydropyrimidine- isatin hybrids as potential antibacterial, antifungal and anti-tubercular agents, Chin. Chem. Lett. 23 (2012) 446-449.

    9. [9]

      [9] A. Ghorbani-Choghamarani, P. Zamani, Three component reactions: An efficient and green synthesis of 3, 4-dihydropyrimidin-2-(1H)-ones and thiones using silica gel-supported l-pyrrolidine-2-carboxylic acid-4-hydrogen sulfate, Chin. Chem. Lett. 24 (2013) 804-808.

    10. [10]

      [10] S. Rostamnia, K. Lamei, Diketene-based neat four-component synthesis of the dihydropyrimidinones and dihydropyridine backbones using silica sulfuric acid (SSA), Chin. Chem. Lett. 23 (2012) 930-932.

    11. [11]

      [11] M.M. Heravi, N. Karimi, H. Hamidi, et al., Cu/SiO2: a recyclable catalyst for the synthesis of octahydroquinazolinone, Chin. Chem. Lett. 24 (2013) 143-144.

    12. [12]

      [12] C.O. Kappe, 100 years of the Biginelli dihydropyrimidine synthesis, Tetrahedron 49 (1993) 6937-6963.

    13. [13]

      [13] C.O. Kappe, Recent advances in the Biginelli dihydropyrimidine synthesis. New tricks from an old dog, Acc. Chem. Res. 33 (2000) 879-888.

    14. [14]

      [14] C.O. Kappe, Biologically active dihydropyrimidones of the Biginelli-type-a literature survey, Eur. J. Med. Chem. 35 (2000) 1043-1052.

    15. [15]

      [15] K.S. Atwal, G.C. Rovnyak, S.D. Kimball, et al., Dihydropyrimidine calcium channel blockers. 2, 3-substituted-4-aryl-1,4-dihydro-6-methyl-5-pyrimidinecarboxylic acid esters as potent mimics of dihydropyridines, J.Med. Chem. 33 (1990) 2629-2635.

    16. [16]

      [16] H.I. El-Subbagh, S.M. Abu-Zaid, M.A. Mahran, F.A. Badria, A.M. Al-Obaid, Synthesis and biological evaluation of certain a, b-unsaturated ketones and their corresponding fused pyridines as antiviral and cytotoxic agents, J. Med. Chem. 43 (2000) 2915-2921.

    17. [17]

      [17] Y.L. Zhu, S.L. Huang, Y.J. Pan, Highly chemoselective multi-component Biginellitype condensations of cycloalkanones, urea or thiourea and aldehydes, Eur. J. Org. Chem. 2005 (2005) 2354-2367.

    18. [18]

      [18] M. Hong, C. Cai, Three-component one-pot synthesis of pyrimidinone derivatives in fluorous media: ytterbium bis(perfluorooctanesulfonyl)imide complex catalyzed Biginelli-type reaction, J. Heterocycl. Chem. 46 (2009) 1430-1432.

    19. [19]

      [19] N.T.A. Dawoud, An efficient and environmentally friendly procedure for synthesis of quinazolinone derivatives by use of a Biginelli-type reaction, Chem. Sci. Trans. 2 (2013) 129-134.

    20. [20]

      [20] H.H. Zhang, Z.Q. Zhou, Z.G. Yao, F. Xu, Q. Shen, Efficient synthesis of pyrimidinone derivatives by ytterbium chloride catalyzed Biginelli-type reaction under solventfree conditions, Tetrahedron Lett. 50 (2009) 1622-1624.

    21. [21]

      [21] A.R. Hajipour, Y. Ghayeb, N. Sheikhan, A.E. Ruoho, Brønsted acidic ionic liquid as an efficient and reusable catalyst for one-pot, three-component synthesis of pyrimidinone derivatives via Biginelli-type reaction under solvent-free conditions, Synth. Commun. 41 (2011) 2226-2233.

    22. [22]

      [22] M. Rahman, A. Majee, A. Hajra, Microwave-assisted Brønsted acidic ionic liquidpromoted one-pot synthesis of heterobicyclic dihydropyrimidinones by a threecomponent coupling of cyclopentanone, aldehydes, and urea, J. Heterocycl. Chem. 47 (2010) 1230-1233.

    23. [23]

      [23] M. Lei, L. Ma, L.H. Hu, An efficient and environmentally friendly procedure for synthesis of pyrimidinone derivatives by use of a Biginelli-type reaction, Monatsh. Chem. 141 (2010) 1005-1008.

    24. [24]

      [24] M.I. Ali, A. El-Fotooh, G. Hammam, Reactions with (arylmethylene)cycloalkanones, 1,2,6-bis(arylmethylene)cyclohexanenes, J. Chem. Eng. Data 23 (1978) 351-352.

    25. [25]

      [25] G.E.H. Elgemeie, A.M.E. Attia, S.S. Alkabai, Nucleic acid components and their analogues: new synthesis of bicyclic thiopyrimidine nucleosides, Nucleos. Nucleot. Nucl. 19 (2000) 723-734.

    26. [26]

      [26] M.I. Ali, A. El-Fotooh, G. Hammam, N.M. Youssef, Reactions with (arylmethylene) cycloalkanones, 3,synthesis of 11-(arylmethylene)octahydrocycloocta[d]thiazolo[3,2-a]pyrimidin-3-one derivatives of expected biological activity, J. Chem. Eng. Data 26 (1981) 214-215.

    27. [27]

      [27] M.A. Al-Omar, K.M. Youssef, M.A. El-Sherbeny, S.A.A. Awadalla, H.I. El-Subbagh, Synthesis and in vitro antioxidant activity of some new fused pyridine analogs, Arch. Pharm. Chem. Life Sci. 338 (2005) 175-180.

    28. [28]

      [28] S.M. Rajesh, R.S. Kumar, L.A. Libertsen, et al., A green expedient synthesis of pyridopyrimidine-2-thiones and their antitubercular activity, Bioorg. Med. Chem. Lett. 21 (2011) 3012-3016.

    29. [29]

      [29] Z.L. Shen, X.P. Xu, S.J. Ji, Brønsted base-catalyzed one-pot three-component Biginelli-type reaction: an efficient synthesis of 4,5,6-triaryl-3,4-dihydropyrimidin- 2(1H)-one and mechanistic study, J. Org. Chem. 75 (2010) 1162-1167.

    30. [30]

      [30] F. Tamaddon, Z. Razmi, A.A. Jafari, Synthesis of 3,4-dihydropyrimidin-2(1H)-ones and 1,4-dihydropyridines using ammonium carbonate in water, Tetrahedron Lett. 51 (2010) 1187-1189.

    31. [31]

      [31] J.O. Metzger, Solvent-free organic syntheses, Angew. Chem. Int. Ed. 37 (1998) 2975-2978.

    32. [32]

      [32] M.S. Singh, S. Chowdhury, Recent developments in solvent-free multicomponent reactions: a perfect synergy for eco-compatible organic synthesis, RSC Adv. 2 (2012) 4547-4592.

    33. [33]

      [33] K.Tanaka, F.Toda, Solvent-free organic synthesis,Chem. Rev.100 (2000)1025-1074.

    34. [34]

      [34] M.J. Climent, A. Corma, S. Iborra, Homogeneous and heterogeneous catalysts for multicomponent reactions, RSC Adv. 2 (2012) 16-58.

    35. [35]

      [35] L. Chen, J. Zhao, S.F. Yin, C.T. Au, A mini-review on solid superbase catalysts developed in the past two decades, RSC Adv. 3 (2013) 3799-3814.

    36. [36]

      [36] M.J. Climent, A. Corma, S.B.A. Hamid, S. Iborra, M. Mifsud, Chemicals from biomass derived products: synthesis of polyoxyethyleneglycol esters from fatty acid methyl esters with solid basic catalysts, Green Chem. 8 (2006) 524-532.

    37. [37]

      [37] P.L. Salzberg, J.V. Supniewski, in: H. Gilman, A.H. Blatt (Eds.), Organic Synthesis Collection, 1, John Wiley, New York, 1995, p. 119.

    38. [38]

      [38] M.B. Smith, J. March, March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, 5th ed., John Wiley, New York, 2001.

    39. [39]

      [39] S.H. Chan, K.H. Lam, C.H. Chui, et al., The preparation and in vitro antiproliferative activity of phthalimide based ketones on MDAMB-231 and SKHep-1 human carcinoma cell lines, Eur. J. Med. Chem. 44 (2009) 2736-2740.

    40. [40]

      [40] P. Singh, S. Kaur, S. Kumar, et al., Synthesis and in vitro cytotoxic evaluation of Nalkylbromo and N-alkylphthalimido-isatins, Bioorg. Med. Chem. Lett. 21 (2011) 3017-3020.

    41. [41]

      [41] C.I. Manley-King, J.J. Bergh, J.P. Petzer, Inhibition of monoamine oxidase by C5- substituted phthalimide analogues, Bioorg. Med. Chem. 19 (2011) 4829-4840.

    42. [42]

      [42] M.G. Dekamin, Z. Karimi, Activation of trimethylsilyl cyanide by potassium phthalimide for facile synthesis of TMS-protected cyanohydrins, J. Organomet. Chem. 694 (2009) 1789-1794.

    43. [43]

      [43] M.G. Dekamin, S. Sagheb-Asl, M.R. Naimi-Jamal, An expeditious synthesis of cyanohydrin trimethylsilyl ethers using tetraethylammonium 2-(carbamoyl)benzoate as a bifunctional organocatalyst, Tetrahedron Lett. 50 (2009) 4063-4066.

    44. [44]

      [44] A. Amoozadeh, S. Rahmani, F. Nemati, Poly(ethylene)glycol/AlCl3 as a new and efficient system for multicomponent Biginelli-type synthesis of pyrimidinone derivatives, Heterocycl. Commun. 19 (2013) 69-73.

  • 加载中
    1. [1]

      Meiling XuXinyang LiPengyuan LiuJunjun LiuXiao HanGuodong ChaiShuangling ZhongBai YangLiying Cui . A novel and visible ratiometric fluorescence determination of carbaryl based on red emissive carbon dots by a solvent-free method. Chinese Chemical Letters, 2025, 36(2): 109860-. doi: 10.1016/j.cclet.2024.109860

    2. [2]

      Meng ShanYongmei YuMengli SunShuping YangMengqi WangBo ZhuJunbiao Chang . Bifunctional organocatalyst-catalyzed dynamic kinetic resolution of hemiketals for synthesis of chiral ketals via hydrogen bonding control. Chinese Chemical Letters, 2025, 36(1): 109781-. doi: 10.1016/j.cclet.2024.109781

    3. [3]

      Peng Wang Daijie Deng Suqin Wu Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2024.100199

    4. [4]

      Jun-Ming CaoKai-Yang ZhangJia-Lin YangZhen-Yi GuXing-Long Wu . Differential bonding behaviors of sodium/potassium-ion storage in sawdust waste carbon derivatives. Chinese Chemical Letters, 2024, 35(4): 109304-. doi: 10.1016/j.cclet.2023.109304

    5. [5]

      Yingfen LiZhiqi WangYunhai ZhaoDajun LuoXueliang ZhangJun ZhaoZhenghua SuShuo ChenGuangxing Liang . Potassium doping for grain boundary passivation and defect suppression enables highly-efficient kesterite solar cells. Chinese Chemical Letters, 2024, 35(11): 109468-. doi: 10.1016/j.cclet.2023.109468

    6. [6]

      Yang LiXiaoxu LiuTianyi JiMan ZhangXueru YanMengjie YaoDawei ShengShaodong LiPeipei RenZexiang Shen . Potassium ion doped manganese oxide nanoscrolls enhanced the performance of aqueous zinc-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109551-. doi: 10.1016/j.cclet.2024.109551

    7. [7]

      Cailing WuShaojie WuQifei HuangKai SunXianqiang HuangJianji WangBing Yu . Potassium-modified carbon nitride photocatalyzed-aminoacylation of N-sulfonyl ketimines. Chinese Chemical Letters, 2025, 36(2): 110250-. doi: 10.1016/j.cclet.2024.110250

    8. [8]

      Tong SuYue WangQizhen ZhuMengyao XuNing QiaoBin Xu . Multiple conductive network for KTi2(PO4)3 anode based on MXene as a binder for high-performance potassium storage. Chinese Chemical Letters, 2024, 35(8): 109191-. doi: 10.1016/j.cclet.2023.109191

    9. [9]

      Zhong-Hui SunYu-Qi ZhangZhen-Yi GuDong-Yang QuHong-Yu GuanXing-Long Wu . CoPSe nanoparticles confined in nitrogen-doped dual carbon network towards high-performance lithium/potassium ion batteries. Chinese Chemical Letters, 2025, 36(1): 109590-. doi: 10.1016/j.cclet.2024.109590

    10. [10]

      Jun-Ting MoZheng Wang . Achieving tunable long persistent luminescence in metal organic halides based on pyridine solvent. Chinese Chemical Letters, 2024, 35(9): 109360-. doi: 10.1016/j.cclet.2023.109360

    11. [11]

      Rui WangYang LiangJulius Rebek Jr.Yang Yu . Stabilization and detection of labile reaction intermediates in supramolecular containers. Chinese Chemical Letters, 2024, 35(6): 109228-. doi: 10.1016/j.cclet.2023.109228

    12. [12]

      Xin LiZhen XuDonglei BuJinming CaiHuamei ChenQi ChenTing ChenFang ChengLifeng ChiWenjie DongZhenchao DongShixuan DuQitang FanXing FanQiang FuSong GaoJing GuoWeijun GuoYang HeShimin HouYing JiangHuihui KongBaojun LiDengyuan LiJie LiQing LiRuoning LiShuying LiYuxuan LinMengxi LiuPeinian LiuYanyan LiuJingtao LüChuanxu MaHaoyang PanJinLiang PanMinghu PanXiaohui QiuZiyong ShenShijing TanBing WangDong WangLi WangLili WangTao WangXiang WangXingyue WangXueyan WangYansong WangYu WangKai WuWei XuNa XueLinghao YanFan YangZhiyong YangChi ZhangXue ZhangYang ZhangYao ZhangXiong ZhouJunfa ZhuYajie ZhangFeixue GaoYongfeng Wang . Recent progress on surface chemistry Ⅰ: Assembly and reaction. Chinese Chemical Letters, 2024, 35(12): 110055-. doi: 10.1016/j.cclet.2024.110055

    13. [13]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    14. [14]

      Xianxu ChuLu WangJunru LiHui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105

    15. [15]

      Kebo XieQian ZhangFei YeJungui Dai . A multi-enzymatic cascade reaction for the synthesis of bioactive C-oligosaccharides. Chinese Chemical Letters, 2024, 35(6): 109028-. doi: 10.1016/j.cclet.2023.109028

    16. [16]

      Zhao LiHuimin YangWenjing ChengLin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237

    17. [17]

      Kunsong HuYulong ZhangJiayi ZhuJinhua MaiGang LiuManoj Krishna SugumarXinhua LiuFeng ZhanRui Tan . Nano-engineered catalysts for high-performance oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(10): 109423-. doi: 10.1016/j.cclet.2023.109423

    18. [18]

      Zhuwen WeiJiayan ChenCongzhen XieYang ChenShifa Zhu . Divergent de novo construction of α-functionalized pyrrole derivatives via coarctate reaction. Chinese Chemical Letters, 2024, 35(12): 109677-. doi: 10.1016/j.cclet.2024.109677

    19. [19]

      Guoliang GaoGuangzhen ZhaoGuang ZhuBowen SunZixu SunShunli LiYa-Qian Lan . Recent advancements in noble-metal electrocatalysts for alkaline hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(1): 109557-. doi: 10.1016/j.cclet.2024.109557

    20. [20]

      Xuhui FanFan WangMengjiao LiFaiza MeharbanYaying LiYuanyuan CuiXiaopeng LiJingsan XuQi XiaoWei Luo . Visible light excitation on CuPd/TiN with enhanced chemisorption for catalyzing Heck reaction. Chinese Chemical Letters, 2025, 36(1): 110299-. doi: 10.1016/j.cclet.2024.110299

Metrics
  • PDF Downloads(0)
  • Abstract views(651)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return