Citation: Khalil Tabatabaeian, Abdollah Fallah Shojaei, Farhad Shirini, Seyyedeh Zoha Hejazi, Mehdi Rassa. A green multicomponent synthesis of bioactive pyrimido[4, 5-b]quinoline derivatives as antibacterial agents in water catalyzed by RuCl3·xH2O[J]. Chinese Chemical Letters, ;2014, 25(2): 308-312. shu

A green multicomponent synthesis of bioactive pyrimido[4, 5-b]quinoline derivatives as antibacterial agents in water catalyzed by RuCl3·xH2O

  • Corresponding author: Khalil Tabatabaeian, 
  • Received Date: 15 August 2013
    Available Online: 8 October 2013

  • An efficient, convenient and environmentally benign one-pot multicomponent reaction for the preparation of pyrimido[4,5-b]quinoline derivatives as biologically, pharmacologically and antibacterially active products has been developed using RuCl3·xH2O as a reusable homogenous catalyst. Use of water as a green solvent, purification of products by non-chromatographic methods, reusability of transition metal homogenous catalyst, saving energy by employing multicomponent reactions, short reaction times and high yields, are some of the advantages of this process.
  • 加载中
    1. [1]

      [1] P.A. Grieco, Organic Synthesis inWater, Thomson Science, London, 1998, pp. 1-278.

    2. [2]

      [2] (a) R. Breslow, U. Maitra, On the origin of product selectivity in aqueous Diels- Alder reactions, Tetrahedron Lett. 25 (1984) 1239-1240; (b) D.C. Rideout, R. Breslow, Hydrophobic acceleration of Diels-Alder reactions, J. Am. Chem. Soc. 102 (1980) 7816-7817.

    3. [3]

      [3] S. Narayan, J. Muldoon, M.G. Finn, et al., On water: unique reactivity of organic compounds in aqueous suspension, Angew. Chem. Int. Ed. 44 (2005) 3275-3279.

    4. [4]

      [4] B. Sharifzadeh, N.O. Mahmoodi, M. Mamaghani, et al., Facile regioselective synthesis of novel bioactive thiazolyl-pyrazolinederivatives via a three-component reaction and their antimicrobial activity, Bioorg. Med. Chem. Lett. 23 (2013) 548-551.

    5. [5]

      [5] R. Hossein nia, M. Mamaghani, K. Tabatabaeian, F. Shirini, M. Rassa, An expeditious regioselective synthesis of novel bioactive indole-substituted chromene derivatives via one-pot three-component reaction, Bioorg. Med. Chem. Lett. 22 (2012) 5956-5960.

    6. [6]

      [6] C.C.A. Cariou, G.J. Clarkson, M.J. Shipman, Rapid synthesis of 1,3,4,4'-tetrasubstituted blactams from methyleneaziridines using a 4-component reaction, Org. Chem. 73 (2008) 9762-9764.

    7. [7]

      [7] B.M. Trost, Atom economy. A challenge for organic synthesis, homogeneous catalysis leads the way, Angew. Chem. Int. Ed. Engl. 34 (1995) 259-281.

    8. [8]

      [8] (a) L.F. Tietze, Domino reactions in organic synthesis, Chem. Rev. 96 (1996) 115-136; (b) H. Waldmann, Domino reaction, in: Organic Synthesis Highlight II, VCH, Weinheim, 1995, pp. 193-202.

    9. [9]

      [9] A.M. Triggle, E. Shefter, D.J. Triggle, Crystal structures of calcium channel antagonists: 2,6-dimethyl-3,5-dicarbomethoxy-4-[2-nitro-3-cyano-4-(dimethylamino)-, and 2,3,4,5,6-pentafluorophenyl]-1,4-dihydropyridine, J. Med. Chem. 23 (1980) 1442-1445.

    10. [10]

      [10] R. Fossheim, K. Svarteng, A. Mostad, et al., Crystal structures and pharmacological activity of calcium channel antagonists: 2,6-dimethyl-3,5-dicarbomethoxy-4- (unsubstituted, 2-methyl-, 4-methyl-, 3-nitro-, 4-nitro-, and 2,4-dinitrophenyl)- 1,4-dihydropyridine, J. Med. Chem. 25 (1982) 126-131.

    11. [11]

      [11] R.P. Mason, I.T. Mark, M.W. Trumbore, P.E. Masson, Antioxidant properties of calcium antagonists related to membrane biophysical interactions, Am. J. Cardiol. 84 (1999) 16-22.

    12. [12]

      [12] G.K. Verma, K. Raghuvanshi, R. Kumar, M.S. Singh, An efficient one-pot threecomponent synthesis of functionalized pyrimido[4,5-b]quinolines and indeno fused pyrido[2,3-d]pyrimidines in water, Tetrahedron Lett. 53 (2012) 399-402.

    13. [13]

      [13] D.Q. Shi, S.N. Ni, F. Yang, et al., An efficient synthesis of pyrimido[4,5-b]quinoline and indeno[20,10:5,6]pyrido[2,3-d]pyrimidine derivatives via multicomponent reactions in ionic liquid, J. Heterocycl. Chem. 45 (2008) 693-702.

    14. [14]

      [14] N.A. Hassan, M.I. Hegab, A.I. Hashem, et al., Three-component, one-pot synthesis of pyrimido[4,5-b]-quinoline and pyrido[2,3-d]pyrimidine derivatives, J. Heterocycl. Chem. 44 (2007) 775-782.

    15. [15]

      [15] F. Nemati, R. Saeedirad, Nano-Fe3O4 encapsulated-silica particles bearing sulfonic acid groups as a magnetically separable catalyst for green and efficient synthesis of functionalized pyrimido[4,5-b]quinolines and indeno fused pyrido[2,3-d]pyrimidines in water, Chin. Chem. Lett. 24 (2013) 370-372.

    16. [16]

      [16] H.Y. Guo, Y. Yu, One-pot synthesis of 7-aryl-11,12-dihydrobenzo[h]pyrimido-[4,5-b]quinoline-8,10(7H,9H)-diones via three-component reaction in ionic liquid, Chin. Chem. Lett. 21 (2010) 1435-1438.

    17. [17]

      [17] Y.S. Sanghhvi, S.B. Larson, S.S. Matsumoto, et al., Antitumor and antiviral activity of synthetic alpha- and beta-ribonucleosides of certain substituted pyrimido[5,4- d]pyrimidines: a new synthetic strategy for exocyclic aminonucleosides, J. Med. Chem. 32 (1989) 629-637.

    18. [18]

      [18] R.B. Tenser, A. Gaydos, K.A. Hay, Inhibition of herpes simplex virus reactivation by dipyridamole, Antimicrob. Agents Chemother. 45 (2001) 3657-3659.

    19. [19]

      [19] J.P. De la Cruz, T. Carrasco, G. Ortega, F. Sanchez De la Cuesta, Inhibition of ferrousinduced lipid peroxidation by pyrimido-pyrimidine derivatives in human liver membranes, Lipid 27 (1992) 192-194.

    20. [20]

      [20] B.S. Holla, M. Mahalinga, M.S. Karthikeyan, P.M. Akberali, N.S. Shetty, Synthesis of some novel pyrazolo[3,4-d]pyrimidine derivatives as potential antimicrobial agents, Bioorg. Med. Chem. 14 (2006) 2040-2047.

    21. [21]

      [21] H.C. Aspinall, Chiral lanthanide complexes: coordination chemistry and applications, Chem. Rev. 102 (2002) 1807-1850.

    22. [22]

      [22] H. Yu, M.S. Zhang, L.R. Cui, Copper-catalyzed synthesis of 1,2-disubstituted benzimidazoles from imidoyl chlorides, Chin. Chem. Lett. 23 (2012) 573-575.

    23. [23]

      [23] I. Murahashi, Ruthenium in Organic Synthesis, Wiley-VCH, New York, 2004.

    24. [24]

      [24] K. Tabatabaeian, M. Mamaghani, N.O. Mahmoodi, A. Khorshidi, Efficient RuⅢcatalyzed condensation of indoles and aldehydes or ketones, Can. J. Chem. 84 (2006) 1541-1545.

    25. [25]

      [25] K. Tabatabaeian, M. Mamaghani, N.O. Mahmoodi, A. Khorshidi, Ultrasonicassisted ruthenium-catalyzed oxidation of aromatic and heteroaromatic compounds, Catal. Commun. 9 (2008) 416-420.

    26. [26]

      [26] K. Tabatabaeian, M. Mamaghani, N.O. Mahmoodi, A. Khorshidi, RuⅢ-catalyzed double-conjugate 1,4-addition of indoles to symmetric enones, J. Mol. Catal. A: Chem. 270 (2007) 112-116.

    27. [27]

      [27] K. Tabatabaeian, M. Mamaghani, N.O. Mahmoodi, A. Khorshidi, Solvent-free, ruthenium-catalyzed, regioselective ring-opening of epoxides, an efficient route to various 3-alkylated indoles, Tetrahedron Lett. 49 (2008) 1450-1454.

    28. [28]

      [28] K. Tabatabaeian, M. Mamaghani, N.O. Mahmoodi, A. Khorshidi, Ruthenium-catalyzed efficient routes to oxindole derivatives, Can. J. Chem. 87 (2009) 1213-1217.

    29. [29]

      [29] K. Tabatabaeian, M. Mamaghani, N.O. Mahmoodi, A. Khorshidi, Diastereoselective ruthenium-catalyzed Michael addition of indoles to hormone steroids: an efficient route to new indole derivatives, Synth. Commun. 40 (2010) 1677-1684.

    30. [30]

      [30] K. Tabatabaeian, A. Khorshidi, M. Mamaghani, A. Dadashi, M. Khoshnood Jalali, One-pot synthesis of tetrahydrobenzo[a]xanthen-11-one derivatives catalyzed by ruthenium chloride hydrate as a homogeneous catalyst, Can. J. Chem. 89 (2011) 623-627.

    31. [31]

      [31] A. Khorshidi, Indole cyanation via C-H bond activation under catalysis of Ru(Ⅲ)- exchanged NaY zeolite (RuY) as a recyclable catalyst, Chin. Chem. Lett. 23 (2012) 903-906.

  • 加载中
    1. [1]

      Xingyu ChenSihui ZhuangWeiyao YanZhengli ZengJianguo FengHongen CaoLei Yu . Synthesis, antibacterial evaluation, and safety assessment of Se@PLA as a potent bactericide against Xanthomonas oryzae pv. oryzae. Chinese Chemical Letters, 2024, 35(10): 109635-. doi: 10.1016/j.cclet.2024.109635

    2. [2]

      Hailang DengAbebe Reda WolduAbdul QayumZanling HuangWeiwei ZhuXiang PengPaul K. ChuLiangsheng Hu . Killing two birds with one stone: Enhancing the photoelectrochemical water splitting activity and stability of BiVO4 by Fe ions association. Chinese Chemical Letters, 2024, 35(12): 109892-. doi: 10.1016/j.cclet.2024.109892

    3. [3]

      Yu PangMin WangNing-Hua YangMin XueYong Yang . One-pot synthesis of a giant twisted double-layer chiral macrocycle via [4 + 8] imine condensation and its X-ray structure. Chinese Chemical Letters, 2024, 35(10): 109575-. doi: 10.1016/j.cclet.2024.109575

    4. [4]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    5. [5]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    6. [6]

      Jinjie LuQikai LiuYuting ZhangYi ZhouYanbo Zhou . Antibacterial performance of cationic quaternary phosphonium-modified chitosan polymer in water. Chinese Chemical Letters, 2024, 35(9): 109406-. doi: 10.1016/j.cclet.2023.109406

    7. [7]

      Fangping YangJin ShiYuansong WeiQing GaoJingrui ShenLichen YinHaoyu Tang . Mixed-charge glycopolypeptides as antibacterial coatings with long-term activity. Chinese Chemical Letters, 2025, 36(2): 109746-. doi: 10.1016/j.cclet.2024.109746

    8. [8]

      Chong LiuLing LiJiahui GaoYanwei LiNazhen ZhangJing ZangCong LiuZhaopei GuoYanhui LiHuayu Tian . The study of antibacterial activity of cationic poly(β-amino ester) regulating by amphiphilic balance. Chinese Chemical Letters, 2025, 36(2): 110118-. doi: 10.1016/j.cclet.2024.110118

    9. [9]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    10. [10]

      Hao WANGKun TANGJiangyang SHAOKezhi WANGYuwu ZHONG . Electro-copolymerized film of ruthenium catalyst and redox mediator for electrocatalytic water oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2193-2202. doi: 10.11862/CJIC.20240176

    11. [11]

      You ZhouLi-Sheng WangShuang-Gui LeiBo-Cheng TangZhi-Cheng YuXing LiYan-Dong WuKai-Lu ZhengAn-Xin Wu . I2-DMSO mediated tetra-functionalization of enaminones for the construction of novel furo[2′,3′:4,5]pyrimido[1,2-b]indazole skeletons via in situ capture of ketenimine cations. Chinese Chemical Letters, 2025, 36(1): 109799-. doi: 10.1016/j.cclet.2024.109799

    12. [12]

      Deqi FanYicheng TangYemei LiaoYan MiYi LuXiaofei Yang . Two birds with one stone: Functionalized wood composites for efficient photocatalytic hydrogen production and solar water evaporation. Chinese Chemical Letters, 2024, 35(9): 109441-. doi: 10.1016/j.cclet.2023.109441

    13. [13]

      Changle Liu Mingyuzhi Sun Haoran Zhang Xiqian Cao Yuqing Li Yingtang Zhou . All in one doubly pillared MXene membrane for excellent oil/water separation, pollutant removal, and anti-fouling performance. Chinese Journal of Structural Chemistry, 2024, 43(8): 100355-100355. doi: 10.1016/j.cjsc.2024.100355

    14. [14]

      Chao LiuChao JiaShi-Xian GanQiao-Yan QiGuo-Fang JiangXin Zhao . A luminescent one-dimensional covalent organic framework for organic arsenic sensing in water. Chinese Chemical Letters, 2024, 35(11): 109750-. doi: 10.1016/j.cclet.2024.109750

    15. [15]

      Entian CuiYulian LuZhaoxia LiZhilei ChenChengyan GeJizhou Jiang . Interfacial B-O bonding modulated S-scheme B-doped N-deficient C3N4/O-doped-C3N5 for efficient photocatalytic overall water splitting. Chinese Chemical Letters, 2025, 36(1): 110288-. doi: 10.1016/j.cclet.2024.110288

    16. [16]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Boosting bulk charge transport of CuWO4 photoanodes via Cs doping for solar water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100207-100207. doi: 10.1016/j.cjsc.2023.100207

    17. [17]

      Meng WangYan ZhangYunbo YuWenpo ShanHong He . High-temperature calcination dramatically promotes the activity of Cs/Co/Ce-Sn catalyst for soot oxidation. Chinese Chemical Letters, 2025, 36(1): 109928-. doi: 10.1016/j.cclet.2024.109928

    18. [18]

      Fang-Yuan ChenWen-Chao GengKang CaiDong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161

    19. [19]

      Kun Tang Yu-Wu Zhong . Water reduction by an organic single-chromophore photocatalyst. Chinese Journal of Structural Chemistry, 2024, 43(8): 100376-100376. doi: 10.1016/j.cjsc.2024.100376

    20. [20]

      Hualin JiangWenxi YeHuitao ZhenXubiao LuoVyacheslav FominskiLong YePinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984

Metrics
  • PDF Downloads(0)
  • Abstract views(740)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return