Citation: Dong-Mei Zhao, Wen-Yan Li, Yu-Fang Shi, Xu-Qiong Xiong, Shuai Song, Chen-Zhou Hao, Mao-Sheng Cheng, Jing-Kang Shen. Pharmacophore-based design, synthesis, and biological evaluation of novel 3-((3, 4-dichlorophenyl)(4-substituted benzyl)amino) propanamides as cholesteryl ester transfer protein (CETP) inhibitors[J]. Chinese Chemical Letters, ;2014, 25(2): 299-304.
-
Cholesteryl ester transfer protein (CETP) is a plasma glycoprotein that plays an important role in decreasing high-density lipoprotein cholesterol (HDL-C) levels and increasing low-density lipoprotein cholesterol (LDL-C) levels. Inhibition of CETP may be a new therapy for treating atherosclerosis. Herein, we report the development of a ligand-based pharmacophore model and pharmacophore-based virtual screening of the ZINC/big-n-greasy database, leading to the identification of compound H-10 as a potential CETP inhibitor in vitro. Based on H-10, a series of 3-((3,4-dichlorophenyl)(4-substituted benzyl)amino) propanamides were designed, synthesized, and evaluated against CETP. Compound 4l was found to have the best activity, resulting in 85.0% inhibition of CETP at 10 μmol/L.
-
-
[1]
[1] H. Bays, E.A. Stein, Pharmacotherapy for dyslipidaemia - current therapies and future agents, Expert. Opin. Pharmacother. 4 (2003) 1901-1938.
-
[2]
[2] R.A. Lange, M.L. Lindsey, HDL-cholesterol levels and cardiovascular risk: acCETPing the context, Eur. Heart J. 29 (2008) 2708-2709.
-
[3]
[3] C.J. Fielding, P.E. Fielding, Molecular physiology of reverse cholesterol transport, J. Lipid Res. 36 (1995) 211-228.
-
[4]
[4] P.J. Barter, K.A. Rye, Molecular mechanisms of reverse cholesterol transport, Curr. Opin. Lipidol. 7 (1996) 82-87.
-
[5]
[5] G. Assmann, J.R. Nofer, Atheroprotective effects of high-density lipoproteins, Annu. Rev. Med. 54 (2003) 321-341.
-
[6]
[6] A.R. Tall, Plasma cholesteryl ester transfer protein, J. Lipid Res. 34 (1993) 1255- 1274.
-
[7]
[7] P.J. Barter, J.J.P. Kastelein, Targeting cholesteryl ester transfer protein for the prevention and management of cardiovascular disease, J. Am. Coll. Cardiol. 47 (2006) 492-499.
-
[8]
[8] H. Bischoff, C. Schmeck, D. Schmidt, et al., Novel use of dioxocin-5-on derivatives, WO 2004039364.
-
[9]
[9] D. Brückner, F.T. Hafner, V. Li, et al., Dibenzodioxocinones—a new class of CETP inhibitors, Bioorg. Med. Chem. Lett. 15 (2005) 3611-3614.
-
[10]
[10] R.C. Durley, M.L. Grapperhaus, M.A. Massa, et al., Discovery of chiral N,N-disubstituted trifluoro-3-amino-2-propanols as potent inhibitors of cholesteryl ester transfer protein, J. Med. Chem. 43 (2000) 4575-4578.
-
[11]
[11] H. Paulsen, C. Schmeck, A. Brandes, et al., Fluorine-substitution in cholesterylester transfer protein inhibitors (CETP-inhibitors): biology, chemistry, SAR, and properties, Chimia 58 (2004) 123-127.
-
[12]
[12] G. Schmidt, R. Angerbauer, A. Brandes, et al., 2-Aryl-substituted pyridines, US5925645.
-
[13]
[13] G. Schmidt, A. Brander, R. Angerbauer, et al., Preparation of tetrahydroquinolines and analogs as cholesteryl ester transfer protein inhibitors, US 6207671.
-
[14]
[14] A. Brandes, M. Loegers, G. Schmidt, et al., Preparation of bicyclic condensed pyridines for treatment of hyperlipoproteinemia and arteriosclerosis, DE 19627430.
-
[15]
[15] J. Stoltefuss, M. Loegers, G. Schmidt, et al., 4-Heteroaryl-tetrahydroquinolines and their use as inhibitors of the cholesterin-ester transfer protein, WO 9914215.
-
[16]
[16] H. Gielen, S. Goldmann, J. Keldenich, et al., Preparation of spiro cyclobutyltetrahydroquinolinols as cholesterol ester transfer protein (CETP) inhibitors, WO 2003028727.
-
[17]
[17] H. Bischoff, H. Gielen, V. Li, et al., Cycloalkyl substituted tetrahydro Chinoline derivatives and use there of medicaments, WO 20063828.
-
[18]
[18] L.F. Lee, K.C. Glenn, D.T. Connolly, et al., Preparation of pyridinecarboxylates and analogs as cholesteryl ester transfer protein inhibitors, WO 9941237.
-
[19]
[19] G. Chang, T. Didiuk, J. Finneman, et al., Preparation of 1,2,4-substituted 1,2,3,4- tetrahydro-and 1,2 dihydro-quinoline and 1,2,3,4-tetrahydro-quinoxaline derivatives as CETP inhibitors for the treatment of atherosclerosis and obesity, WO 200408540.
-
[20]
[20] Z. Jones, R. Groneberg, M. Drew, et al., Preparation of 1,2,3,4-tetrahydroquinoxaline derivatives as inhibitors of cholesteryl ester transfer protein (CETP), US 20050282812.
-
[21]
[21] C.T. Eary, Z.S. Jones, R.D. Groneberg, et al., Tetrazole and ester substituted tetrahydoquinoxalines as potent cholesteryl ester transfer protein inhibitors, Bioorg. Med. Chem. Lett. 17 (2007) 2608-2613.
-
[22]
[22] A. Conte-Mayweg, H. Kuehne, M. Cyrille, et al., Preparation of indole, indazole or indoline derivatives as cholesterol ester-exchanging protein inhibitors, WO 2006013048.
-
[23]
[23] C.F. Thompson, A. Ali, N. Quraishi, et al., Discovery of substituted biphenyl oxazolidinone inhibitors of cholesteryl ester transfer protein, Med. Chem. Lett. 2 (2011) 424-427.
-
[24]
[24] A. Ali, J.M. Napolitano, Q. Deng, et al., Preparation of cholesteryl ester transfer protein (CETP) inhibitors, WO 2006014413.
-
[25]
[25] J.A. Sikorski, R.C. Durley, M.A. Massa, et al., Preparation of N-benzyl-N-phenylamino alcohols as cholesteryl ester transfer protein activity inhibitors, US 6482862.
-
[26]
[26] R.C. Durley, M.L. Grapperhaus, B.S. Hickory, et al., Chiral N,N-disubstituted trifluoro- 3-amino-2-propanols are potent inhibitors of cholesteryl ester transfer protein, J. Med. Chem. 45 (2002) 3891-3904.
-
[27]
[27] M. Kori, K. Hamamura, H. Fuse, et al., Preparation of aminoethanol derivatives as cholesteryl ester transfer protein inhibitors for treatment of hyperlipidemia, WO 2002059077.
-
[28]
[28] D.E. Epps, K.A. Greenlee, J.S. Harris, et al., Kinetics and inhibition of lipid exchange catalyzed by plasma cholesteryl ester transfer protein (lipid transfer protein), Biochemistry 34 (1995) 12560-12569.
-
[29]
[29] D.T. Connolly, E.S. Krul, D. Heuvelman, K.C. Glenn, Inhibition of cholesteryl ester transfer protein by apolipoproteins, lipopolysaccharides, and cholesteryl sulfate, Biochim. Biophys. Acta 1304 (1996) 145-160.
-
[30]
[30] J.C. Lee, S.J. Coval, J. Clardy, A cholesteryl ester transfer protein inhibitor from an insect-associated fungus, J. Antibiot. 49 (1996) 693-696.
-
[31]
[31] D.H. Hua, X.D. Huang, Y. Chen, et al., Total syntheses of (+)-chloropuupehenone and (+)-chloropuupehenol and their analogues and evaluation of their bioactivities, J. Org. Chem. 69 (2004) 6065-6078.
-
[32]
[32] W.Y. Li, X.Q. Xiong, D.M. Zhao, et al., Quinoline-3-carboxamide derivatives as potential cholesteryl ester transfer protein inhibitors, Molecules 17 (2012) 5497- 5507.
-
[33]
[33] J. Böstrom, J.R. Greenwood, J. Gottfries, Assessing the performance of OMEGA with respect to retrieving bioactive conformations, J. Mol. Graph. Model. 21 (2003) 449-462.
-
[34]
[34] S. Renner, C.H. Schwab, J. Gasteiger, G. Schneider, Impact of conformational flexibility on three-dimensional similarity searching using correlation vectors, J. Chem. Inf. Model. 46 (2006) 2324-2332.
-
[1]
-
-
[1]
Yulong Shi , Fenbei Chen , Mengyuan Wu , Xin Zhang , Runze Meng , Kun Wang , Yan Wang , Yuheng Mei , Qionglu Duan , Yinghong Li , Rongmei Gao , Yuhuan Li , Hongbin Deng , Jiandong Jiang , Yanxiang Wang , Danqing Song . Chemical construction and anti-HCoV-OC43 evaluation of novel 10,12-disubstituted aloperine derivatives as dual cofactor inhibitors of TMPRSS2 and SR-B1. Chinese Chemical Letters, 2024, 35(5): 108792-. doi: 10.1016/j.cclet.2023.108792
-
[2]
Jiaming Xu , Yu Xiang , Weisheng Lin , Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093
-
[3]
Mianling Yang , Meehyein Kim , Peng Zhan . Modular miniaturized synthesis and in situ biological evaluation facilitate rapid discovery of potent MraY inhibitors as antibacterial agents. Chinese Chemical Letters, 2025, 36(2): 110455-. doi: 10.1016/j.cclet.2024.110455
-
[4]
Mei Peng , Wei-Min He . Photochemical synthesis and group transfer reactions of azoxy compounds. Chinese Chemical Letters, 2024, 35(8): 109899-. doi: 10.1016/j.cclet.2024.109899
-
[5]
Ying Li , Long-Jie Wang , Yong-Kang Zhou , Jun Liang , Bin Xiao , Ji-Shen Zheng . An improved installation of 2-hydroxy-4-methoxybenzyl (iHmb) method for chemical protein synthesis. Chinese Chemical Letters, 2024, 35(5): 109033-. doi: 10.1016/j.cclet.2023.109033
-
[6]
Chaochao Jin , Kai Li , Jiongpei Zhang , Zhihua Wang , Jiajing Tan . N,O-Bidentated difluoroboron complexes based on pyridine-ester enolates: Facile synthesis, post-complexation modification, optical properties, and applications. Chinese Chemical Letters, 2024, 35(9): 109532-. doi: 10.1016/j.cclet.2024.109532
-
[7]
Huimin Luan , Qinming Wu , Jianping Wu , Xiangju Meng , Feng-Shou Xiao . Templates for the synthesis of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100252-100252. doi: 10.1016/j.cjsc.2024.100252
-
[8]
Zhaojun Liu , Zerui Mu , Chuanbo Gao . Alloy nanocrystals: Synthesis paradigms and implications. Chinese Journal of Structural Chemistry, 2023, 42(11): 100156-100156. doi: 10.1016/j.cjsc.2023.100156
-
[9]
Zhenhao Wang , Yuliang Tang , Ruyu Li , Shuai Tian , Yu Tang , Dehai Li . Bioinspired synthesis of cochlearol B and ganocin A. Chinese Chemical Letters, 2024, 35(7): 109247-. doi: 10.1016/j.cclet.2023.109247
-
[10]
Hui Jin , Qin Cai , Peiwen Liu , Yan Chen , Derong Wang , Weiping Zhu , Yufang Xu , Xuhong Qian . Multistep continuous flow synthesis of Erlotinib. Chinese Chemical Letters, 2024, 35(4): 108721-. doi: 10.1016/j.cclet.2023.108721
-
[11]
Hongmei Yu , Baoxi Zhang , Meiju Liu , Cheng Xing , Guorong He , Li Zhang , Ningbo Gong , Yang Lu , Guanhua Du . Theoretical and experimental cocrystal screening of temozolomide with a series of phenolic acids, promising cocrystal coformers. Chinese Chemical Letters, 2024, 35(5): 109032-. doi: 10.1016/j.cclet.2023.109032
-
[12]
Shiqi Xu , Zi Ye , Shuang Shang , Fengge Wang , Huan Zhang , Lianguo Chen , Hao Lin , Chen Chen , Fang Hua , Chong-Jing Zhang . Pairs of thiol-substituted 1,2,4-triazole-based isomeric covalent inhibitors with tunable reactivity and selectivity. Chinese Chemical Letters, 2024, 35(7): 109034-. doi: 10.1016/j.cclet.2023.109034
-
[13]
Jia Chen , Yun Liu , Zerong Long , Yan Li , Hongdeng Qiu . Colorimetric detection of α-glucosidase activity using Ni-CeO2 nanorods and its application to potential natural inhibitor screening. Chinese Chemical Letters, 2024, 35(9): 109463-. doi: 10.1016/j.cclet.2023.109463
-
[14]
Beitong Zhu , Xiaorui Yang , Lirong Jiang , Tianhong Chen , Shuangfei Wang , Lintao Zeng . A portable and versatile fluorescent platform for high-throughput screening of toxic phosgene, diethyl chlorophosphate and volatile acyl chlorides. Chinese Chemical Letters, 2025, 36(1): 110222-. doi: 10.1016/j.cclet.2024.110222
-
[15]
Qingyun Hu , Wei Wang , Junyuan Lu , He Zhu , Qi Liu , Yang Ren , Hong Wang , Jian Hui . High-throughput screening of high energy density LiMn1-xFexPO4 via active learning. Chinese Chemical Letters, 2025, 36(2): 110344-. doi: 10.1016/j.cclet.2024.110344
-
[16]
Caihong Mao , Yanfeng He , Xiaohan Wang , Yan Cai , Xiaobo Hu . Synthesis and molecular recognition characteristics of a tetrapodal benzene cage. Chinese Chemical Letters, 2024, 35(8): 109362-. doi: 10.1016/j.cclet.2023.109362
-
[17]
Liyong Ding , Zhenhua Pan , Qian Wang . 2D photocatalysts for hydrogen peroxide synthesis. Chinese Chemical Letters, 2024, 35(12): 110125-. doi: 10.1016/j.cclet.2024.110125
-
[18]
Xiaoyu Chen , Jiahao Hu , Jingyi Lin , Haiyang Huang , Changqing Ye , Hongli Bao . Biisoindolylidene solvatochromic fluorophores: Synthesis and photophysical properties. Chinese Chemical Letters, 2025, 36(2): 109923-. doi: 10.1016/j.cclet.2024.109923
-
[19]
Tengfei Xuan , Xinyu Zhang , Wei Han , Yidong Huang , Weiwu Ren . Total synthesis of (+)-taberdicatine B and (+)-tabernabovine B. Chinese Chemical Letters, 2025, 36(2): 109816-. doi: 10.1016/j.cclet.2024.109816
-
[20]
Yuqing Liu , Yu Yang , Yuhan E , Changlong Pang , Di Cui , Ang Li . Insight into microbial synthesis of metal nanomaterials and their environmental applications: Exploration for enhanced controllable synthesis. Chinese Chemical Letters, 2024, 35(11): 109651-. doi: 10.1016/j.cclet.2024.109651
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(775)
- HTML views(19)