Citation: Dong-Mei Zhao, Wen-Yan Li, Yu-Fang Shi, Xu-Qiong Xiong, Shuai Song, Chen-Zhou Hao, Mao-Sheng Cheng, Jing-Kang Shen. Pharmacophore-based design, synthesis, and biological evaluation of novel 3-((3, 4-dichlorophenyl)(4-substituted benzyl)amino) propanamides as cholesteryl ester transfer protein (CETP) inhibitors[J]. Chinese Chemical Letters, ;2014, 25(2): 299-304. shu

Pharmacophore-based design, synthesis, and biological evaluation of novel 3-((3, 4-dichlorophenyl)(4-substituted benzyl)amino) propanamides as cholesteryl ester transfer protein (CETP) inhibitors

  • Corresponding author: Mao-Sheng Cheng,  Jing-Kang Shen, 
  • Received Date: 14 June 2013
    Available Online: 23 October 2013

  • Cholesteryl ester transfer protein (CETP) is a plasma glycoprotein that plays an important role in decreasing high-density lipoprotein cholesterol (HDL-C) levels and increasing low-density lipoprotein cholesterol (LDL-C) levels. Inhibition of CETP may be a new therapy for treating atherosclerosis. Herein, we report the development of a ligand-based pharmacophore model and pharmacophore-based virtual screening of the ZINC/big-n-greasy database, leading to the identification of compound H-10 as a potential CETP inhibitor in vitro. Based on H-10, a series of 3-((3,4-dichlorophenyl)(4-substituted benzyl)amino) propanamides were designed, synthesized, and evaluated against CETP. Compound 4l was found to have the best activity, resulting in 85.0% inhibition of CETP at 10 μmol/L.
  • 加载中
    1. [1]

      [1] H. Bays, E.A. Stein, Pharmacotherapy for dyslipidaemia - current therapies and future agents, Expert. Opin. Pharmacother. 4 (2003) 1901-1938.

    2. [2]

      [2] R.A. Lange, M.L. Lindsey, HDL-cholesterol levels and cardiovascular risk: acCETPing the context, Eur. Heart J. 29 (2008) 2708-2709.

    3. [3]

      [3] C.J. Fielding, P.E. Fielding, Molecular physiology of reverse cholesterol transport, J. Lipid Res. 36 (1995) 211-228.

    4. [4]

      [4] P.J. Barter, K.A. Rye, Molecular mechanisms of reverse cholesterol transport, Curr. Opin. Lipidol. 7 (1996) 82-87.

    5. [5]

      [5] G. Assmann, J.R. Nofer, Atheroprotective effects of high-density lipoproteins, Annu. Rev. Med. 54 (2003) 321-341.

    6. [6]

      [6] A.R. Tall, Plasma cholesteryl ester transfer protein, J. Lipid Res. 34 (1993) 1255- 1274.

    7. [7]

      [7] P.J. Barter, J.J.P. Kastelein, Targeting cholesteryl ester transfer protein for the prevention and management of cardiovascular disease, J. Am. Coll. Cardiol. 47 (2006) 492-499.

    8. [8]

      [8] H. Bischoff, C. Schmeck, D. Schmidt, et al., Novel use of dioxocin-5-on derivatives, WO 2004039364.

    9. [9]

      [9] D. Brückner, F.T. Hafner, V. Li, et al., Dibenzodioxocinones—a new class of CETP inhibitors, Bioorg. Med. Chem. Lett. 15 (2005) 3611-3614.

    10. [10]

      [10] R.C. Durley, M.L. Grapperhaus, M.A. Massa, et al., Discovery of chiral N,N-disubstituted trifluoro-3-amino-2-propanols as potent inhibitors of cholesteryl ester transfer protein, J. Med. Chem. 43 (2000) 4575-4578.

    11. [11]

      [11] H. Paulsen, C. Schmeck, A. Brandes, et al., Fluorine-substitution in cholesterylester transfer protein inhibitors (CETP-inhibitors): biology, chemistry, SAR, and properties, Chimia 58 (2004) 123-127.

    12. [12]

      [12] G. Schmidt, R. Angerbauer, A. Brandes, et al., 2-Aryl-substituted pyridines, US5925645.

    13. [13]

      [13] G. Schmidt, A. Brander, R. Angerbauer, et al., Preparation of tetrahydroquinolines and analogs as cholesteryl ester transfer protein inhibitors, US 6207671.

    14. [14]

      [14] A. Brandes, M. Loegers, G. Schmidt, et al., Preparation of bicyclic condensed pyridines for treatment of hyperlipoproteinemia and arteriosclerosis, DE 19627430.

    15. [15]

      [15] J. Stoltefuss, M. Loegers, G. Schmidt, et al., 4-Heteroaryl-tetrahydroquinolines and their use as inhibitors of the cholesterin-ester transfer protein, WO 9914215.

    16. [16]

      [16] H. Gielen, S. Goldmann, J. Keldenich, et al., Preparation of spiro cyclobutyltetrahydroquinolinols as cholesterol ester transfer protein (CETP) inhibitors, WO 2003028727.

    17. [17]

      [17] H. Bischoff, H. Gielen, V. Li, et al., Cycloalkyl substituted tetrahydro Chinoline derivatives and use there of medicaments, WO 20063828.

    18. [18]

      [18] L.F. Lee, K.C. Glenn, D.T. Connolly, et al., Preparation of pyridinecarboxylates and analogs as cholesteryl ester transfer protein inhibitors, WO 9941237.

    19. [19]

      [19] G. Chang, T. Didiuk, J. Finneman, et al., Preparation of 1,2,4-substituted 1,2,3,4- tetrahydro-and 1,2 dihydro-quinoline and 1,2,3,4-tetrahydro-quinoxaline derivatives as CETP inhibitors for the treatment of atherosclerosis and obesity, WO 200408540.

    20. [20]

      [20] Z. Jones, R. Groneberg, M. Drew, et al., Preparation of 1,2,3,4-tetrahydroquinoxaline derivatives as inhibitors of cholesteryl ester transfer protein (CETP), US 20050282812.

    21. [21]

      [21] C.T. Eary, Z.S. Jones, R.D. Groneberg, et al., Tetrazole and ester substituted tetrahydoquinoxalines as potent cholesteryl ester transfer protein inhibitors, Bioorg. Med. Chem. Lett. 17 (2007) 2608-2613.

    22. [22]

      [22] A. Conte-Mayweg, H. Kuehne, M. Cyrille, et al., Preparation of indole, indazole or indoline derivatives as cholesterol ester-exchanging protein inhibitors, WO 2006013048.

    23. [23]

      [23] C.F. Thompson, A. Ali, N. Quraishi, et al., Discovery of substituted biphenyl oxazolidinone inhibitors of cholesteryl ester transfer protein, Med. Chem. Lett. 2 (2011) 424-427.

    24. [24]

      [24] A. Ali, J.M. Napolitano, Q. Deng, et al., Preparation of cholesteryl ester transfer protein (CETP) inhibitors, WO 2006014413.

    25. [25]

      [25] J.A. Sikorski, R.C. Durley, M.A. Massa, et al., Preparation of N-benzyl-N-phenylamino alcohols as cholesteryl ester transfer protein activity inhibitors, US 6482862.

    26. [26]

      [26] R.C. Durley, M.L. Grapperhaus, B.S. Hickory, et al., Chiral N,N-disubstituted trifluoro- 3-amino-2-propanols are potent inhibitors of cholesteryl ester transfer protein, J. Med. Chem. 45 (2002) 3891-3904.

    27. [27]

      [27] M. Kori, K. Hamamura, H. Fuse, et al., Preparation of aminoethanol derivatives as cholesteryl ester transfer protein inhibitors for treatment of hyperlipidemia, WO 2002059077.

    28. [28]

      [28] D.E. Epps, K.A. Greenlee, J.S. Harris, et al., Kinetics and inhibition of lipid exchange catalyzed by plasma cholesteryl ester transfer protein (lipid transfer protein), Biochemistry 34 (1995) 12560-12569.

    29. [29]

      [29] D.T. Connolly, E.S. Krul, D. Heuvelman, K.C. Glenn, Inhibition of cholesteryl ester transfer protein by apolipoproteins, lipopolysaccharides, and cholesteryl sulfate, Biochim. Biophys. Acta 1304 (1996) 145-160.

    30. [30]

      [30] J.C. Lee, S.J. Coval, J. Clardy, A cholesteryl ester transfer protein inhibitor from an insect-associated fungus, J. Antibiot. 49 (1996) 693-696.

    31. [31]

      [31] D.H. Hua, X.D. Huang, Y. Chen, et al., Total syntheses of (+)-chloropuupehenone and (+)-chloropuupehenol and their analogues and evaluation of their bioactivities, J. Org. Chem. 69 (2004) 6065-6078.

    32. [32]

      [32] W.Y. Li, X.Q. Xiong, D.M. Zhao, et al., Quinoline-3-carboxamide derivatives as potential cholesteryl ester transfer protein inhibitors, Molecules 17 (2012) 5497- 5507.

    33. [33]

      [33] J. Böstrom, J.R. Greenwood, J. Gottfries, Assessing the performance of OMEGA with respect to retrieving bioactive conformations, J. Mol. Graph. Model. 21 (2003) 449-462.

    34. [34]

      [34] S. Renner, C.H. Schwab, J. Gasteiger, G. Schneider, Impact of conformational flexibility on three-dimensional similarity searching using correlation vectors, J. Chem. Inf. Model. 46 (2006) 2324-2332.

  • 加载中
    1. [1]

      Yulong ShiFenbei ChenMengyuan WuXin ZhangRunze MengKun WangYan WangYuheng MeiQionglu DuanYinghong LiRongmei GaoYuhuan LiHongbin DengJiandong JiangYanxiang WangDanqing Song . Chemical construction and anti-HCoV-OC43 evaluation of novel 10,12-disubstituted aloperine derivatives as dual cofactor inhibitors of TMPRSS2 and SR-B1. Chinese Chemical Letters, 2024, 35(5): 108792-. doi: 10.1016/j.cclet.2023.108792

    2. [2]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    3. [3]

      Mianling YangMeehyein KimPeng Zhan . Modular miniaturized synthesis and in situ biological evaluation facilitate rapid discovery of potent MraY inhibitors as antibacterial agents. Chinese Chemical Letters, 2025, 36(2): 110455-. doi: 10.1016/j.cclet.2024.110455

    4. [4]

      Mei PengWei-Min He . Photochemical synthesis and group transfer reactions of azoxy compounds. Chinese Chemical Letters, 2024, 35(8): 109899-. doi: 10.1016/j.cclet.2024.109899

    5. [5]

      Ying LiLong-Jie WangYong-Kang ZhouJun LiangBin XiaoJi-Shen Zheng . An improved installation of 2-hydroxy-4-methoxybenzyl (iHmb) method for chemical protein synthesis. Chinese Chemical Letters, 2024, 35(5): 109033-. doi: 10.1016/j.cclet.2023.109033

    6. [6]

      Chaochao JinKai LiJiongpei ZhangZhihua WangJiajing TanN,O-Bidentated difluoroboron complexes based on pyridine-ester enolates: Facile synthesis, post-complexation modification, optical properties, and applications. Chinese Chemical Letters, 2024, 35(9): 109532-. doi: 10.1016/j.cclet.2024.109532

    7. [7]

      Huimin Luan Qinming Wu Jianping Wu Xiangju Meng Feng-Shou Xiao . Templates for the synthesis of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100252-100252. doi: 10.1016/j.cjsc.2024.100252

    8. [8]

      Zhaojun Liu Zerui Mu Chuanbo Gao . Alloy nanocrystals: Synthesis paradigms and implications. Chinese Journal of Structural Chemistry, 2023, 42(11): 100156-100156. doi: 10.1016/j.cjsc.2023.100156

    9. [9]

      Zhenhao WangYuliang TangRuyu LiShuai TianYu TangDehai Li . Bioinspired synthesis of cochlearol B and ganocin A. Chinese Chemical Letters, 2024, 35(7): 109247-. doi: 10.1016/j.cclet.2023.109247

    10. [10]

      Hui JinQin CaiPeiwen LiuYan ChenDerong WangWeiping ZhuYufang XuXuhong Qian . Multistep continuous flow synthesis of Erlotinib. Chinese Chemical Letters, 2024, 35(4): 108721-. doi: 10.1016/j.cclet.2023.108721

    11. [11]

      Hongmei YuBaoxi ZhangMeiju LiuCheng XingGuorong HeLi ZhangNingbo GongYang LuGuanhua Du . Theoretical and experimental cocrystal screening of temozolomide with a series of phenolic acids, promising cocrystal coformers. Chinese Chemical Letters, 2024, 35(5): 109032-. doi: 10.1016/j.cclet.2023.109032

    12. [12]

      Shiqi XuZi YeShuang ShangFengge WangHuan ZhangLianguo ChenHao LinChen ChenFang HuaChong-Jing Zhang . Pairs of thiol-substituted 1,2,4-triazole-based isomeric covalent inhibitors with tunable reactivity and selectivity. Chinese Chemical Letters, 2024, 35(7): 109034-. doi: 10.1016/j.cclet.2023.109034

    13. [13]

      Jia ChenYun LiuZerong LongYan LiHongdeng Qiu . Colorimetric detection of α-glucosidase activity using Ni-CeO2 nanorods and its application to potential natural inhibitor screening. Chinese Chemical Letters, 2024, 35(9): 109463-. doi: 10.1016/j.cclet.2023.109463

    14. [14]

      Beitong ZhuXiaorui YangLirong JiangTianhong ChenShuangfei WangLintao Zeng . A portable and versatile fluorescent platform for high-throughput screening of toxic phosgene, diethyl chlorophosphate and volatile acyl chlorides. Chinese Chemical Letters, 2025, 36(1): 110222-. doi: 10.1016/j.cclet.2024.110222

    15. [15]

      Qingyun HuWei WangJunyuan LuHe ZhuQi LiuYang RenHong WangJian Hui . High-throughput screening of high energy density LiMn1-xFexPO4 via active learning. Chinese Chemical Letters, 2025, 36(2): 110344-. doi: 10.1016/j.cclet.2024.110344

    16. [16]

      Caihong MaoYanfeng HeXiaohan WangYan CaiXiaobo Hu . Synthesis and molecular recognition characteristics of a tetrapodal benzene cage. Chinese Chemical Letters, 2024, 35(8): 109362-. doi: 10.1016/j.cclet.2023.109362

    17. [17]

      Liyong DingZhenhua PanQian Wang . 2D photocatalysts for hydrogen peroxide synthesis. Chinese Chemical Letters, 2024, 35(12): 110125-. doi: 10.1016/j.cclet.2024.110125

    18. [18]

      Xiaoyu ChenJiahao HuJingyi LinHaiyang HuangChangqing YeHongli Bao . Biisoindolylidene solvatochromic fluorophores: Synthesis and photophysical properties. Chinese Chemical Letters, 2025, 36(2): 109923-. doi: 10.1016/j.cclet.2024.109923

    19. [19]

      Tengfei XuanXinyu ZhangWei HanYidong HuangWeiwu Ren . Total synthesis of (+)-taberdicatine B and (+)-tabernabovine B. Chinese Chemical Letters, 2025, 36(2): 109816-. doi: 10.1016/j.cclet.2024.109816

    20. [20]

      Yuqing LiuYu YangYuhan EChanglong PangDi CuiAng Li . Insight into microbial synthesis of metal nanomaterials and their environmental applications: Exploration for enhanced controllable synthesis. Chinese Chemical Letters, 2024, 35(11): 109651-. doi: 10.1016/j.cclet.2024.109651

Metrics
  • PDF Downloads(0)
  • Abstract views(775)
  • HTML views(19)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return