Citation: Zuo-Peng Li, Ya-Qiong Wen, Jian-Peng Shang, Mei-Xia Wu, Long-Fei Wang, Yong Guo. Magnetically recoverable Cu2O/Fe3O4 composite photocatalysts:Fabrication and photocatalytic activity[J]. Chinese Chemical Letters, ;2014, 25(2): 287-291. shu

Magnetically recoverable Cu2O/Fe3O4 composite photocatalysts:Fabrication and photocatalytic activity

  • Corresponding author: Yong Guo, 
  • Received Date: 30 July 2013
    Available Online: 8 October 2013

    Fund Project: This work was financially supported by National Natural Science Foundation of China (No. 21073113) (No. 21073113) Shanxi Province Science Foundation for Youths (No. 2012021006-1) (No. 2012021006-1)

  • A magnetically separable Cu2O/Fe3O4 magnetic composite photocatalyst was synthesized in large quantities by a fast and simple route. The as-prepared photocatalysts were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). Furthermore, the Cu2O/Fe3O4 composite photocatalysts were tested using methyl orange (MO) degradation reaction under visible light irradiation (100 mW/cm2) and demonstrated to have a high photocatalytic efficiency toward the decomposition of MO under visible light irradiation with good recyclability.
  • 加载中
    1. [1]

      [1] M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Environmental applications of semiconductor photocatalysis, Chem. Rev. 95 (1995) 69-96.

    2. [2]

      [2] C. Chen, W. Ma, J. Zhao, Semiconductor-mediated photodegradation of pollutants under visible-light irradiation, Chem. Soc. Rev. 39 (2010) 4206-4219.

    3. [3]

      [3] M.A. Fox, M.T. Dulay, Heterogeneous photocatalysis, Chem. Rev. 93 (1993) 341- 357.

    4. [4]

      [4] P.L. Ji, X.Z. Kong, J.G. Wang, X.L. Zhu, Characterization and photocatalytic properties of silver and silver chloride doped TiO2 hollow nanoparticles, Chin. Chem. Lett. 23 (2012) 1399-1402.

    5. [5]

      [5] S. Ito, K.R. Thampi, P. Comte, P. Liska, M. Grätzel, Highly active meso-microporous TaON photocatalyst driven by visible light, Chem. Commun. (2005) 268-270.

    6. [6]

      [6] P. Wang, B. Huang, X. Qin, et al., Ag@AgCl: a highly efficient and stable photocatalyst active under visible light, Angew. Chem. Int. Ed. 47 (2008) 7931-7933.

    7. [7]

      [7] C. An, S. Peng, Y. Sun, Facile synthesis of sunlight-driven AgCl: Ag plasmonic nanophotocatalyst, Adv. Mater. 22 (2010) 2570-2574.

    8. [8]

      [8] L. Han, P. Wang, C. Zhu, Y. Zhai, S. Dong, Facile solvothermal synthesis of cube-like Ag@AgCl: a highly efficient visible light photocatalyst, Nanoscale 3 (2011) 2931- 2935.

    9. [9]

      [9] H. Wang, B. Wang, S. Ma, Synthesis of visible-light-driven TiO2 yolk-shell spheres with {0 0 1} facets, dominated mesoporous shells, Chin. Chem. Lett. 24 (2013) 260-263.

    10. [10]

      [10] Z. Yi, J. Ye, N. Kikugawa, et al., An orthophosphate semiconductor with photooxidation properties under visible-light irradiation, Nat. Mater. 9 (2010) 559-564.

    11. [11]

      [11] M. Hara, T. Kondo, M. Komoda, et al., Cu2O as a photocatalyst for overall water splitting under visible light irradiation, Chem. Commun. (1998) 357-358.

    12. [12]

      [12] P.E. De Jongh, D. Vanmaekelbergh, J.J. Kelly, Cu2O: a catalyst for the photochemical decomposition of water? Chem. Commun. (1999) 1069-1070.

    13. [13]

      [13] W. Huang, L. Lyu, Y. Yang, H. Michael, Synthesis of Cu2O nanocrystals from cubic to rhombic dodecahedral structures and their comparative photocatalytic activity, J. Am. Chem. Soc. 134 (2012) 1261-1267.

    14. [14]

      [14] Y. Zhang, B. Deng, T. Zhang, D. Gao, A. Xu, Shape effects of Cu2O polyhedral microcrystals on photocatalytic activity, J. Phys. Chem. C 114 (2010) 5073-5079.

    15. [15]

      [15] S. Li, F. Huang, Y.Wang, et al., Magnetic Fe3O4@C@Cu2O composites with bean-like core/shell nanostructures: synthesis, properties and application in recyclable photocatalytic degradation of dye pollutants, J.Mater. Chem. 21 (2011) 7459-7466.

    16. [16]

      [16] H. Wang, Y. Hu, Y. Jiang, et al., Facile synthesis and excellent recyclable photocatalytic activity of pine cone-like Fe3O4@Cu2O/Cu porous nanocomposites, Dalton Trans. 42 (2013) 4915-4921.

    17. [17]

      [17] A. Yan, X. Liu, G. Qiu, et al., A simple solvothermal synthesis and characterization of round-biscuit-like Fe3O4 nanoparticles with adjustable sizes, Solid State Commun. 144 (2007) 315-318.

    18. [18]

      [18] J.F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomben, Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer Corporation, Eden Prairie, MN, 1992p. 81.

  • 加载中
    1. [1]

      Fengrui YangDebing WangXinying ZhangJie ZhangZhichao WuQiaoying Wang . Synergistic effects of peroxydisulfate on UV/O3 process for tetracycline degradation: Mechanism and pathways. Chinese Chemical Letters, 2024, 35(10): 109599-. doi: 10.1016/j.cclet.2024.109599

    2. [2]

      Shuo LiXinran LiuYongjie ZhengJun MaShijie YouHeshan Zheng . Effective peroxydisulfate activation by CQDs-MnFe2O4@ZIF-8 catalyst for complementary degradation of bisphenol A by free radicals and non-radical pathways. Chinese Chemical Letters, 2024, 35(5): 108971-. doi: 10.1016/j.cclet.2023.108971

    3. [3]

      Xiaoming Fu Haibo Huang Guogang Tang Jingmin Zhang Junyue Sheng Hua Tang . Recent advances in g-C3N4-based direct Z-scheme photocatalysts for environmental and energy applications. Chinese Journal of Structural Chemistry, 2024, 43(2): 100214-100214. doi: 10.1016/j.cjsc.2024.100214

    4. [4]

      Xuanzhu Huo Yixi Liu Qiyu Wu Zhiqiang Dong Chanzi Ruan Yanping Ren . Integrated Experiment of “Electrolytic Preparation of Cu2O and Gasometric Determination of Avogadro’s Constant: Implementation, Results, and Discussion: A Micro-Experiment Recommended for Freshmen in Higher Education at Various Levels Across the Nation. University Chemistry, 2024, 39(3): 302-307. doi: 10.3866/PKU.DXHX202308095

    5. [5]

      Yuan ZhangShenghao GongA.R. Mahammed ShaheerRong CaoTianfu Liu . Plasmon-enhanced photocatalytic oxidative coupling of amines in the air using a delicate Ag nanowire@NH2-UiO-66 core-shell nanostructures. Chinese Chemical Letters, 2024, 35(4): 108587-. doi: 10.1016/j.cclet.2023.108587

    6. [6]

      Ming-Yi SunLu ZhangYa LiChong-Chen WangPeng WangXueying RenXiao-Hong Yi . Recovering Ag+ with nano-MOF-303 to form Ag/AgCl/MOF-303 photocatalyst: The role of stored Cl ions. Chinese Chemical Letters, 2025, 36(2): 110035-. doi: 10.1016/j.cclet.2024.110035

    7. [7]

      Yuqing ZhuHaohao ChenLi WangLiqun YeHoule ZhouQintian PengHuaiyong ZhuYingping Huang . Piezoelectric materials for pollutants degradation: State-of-the-art accomplishments and prospects. Chinese Chemical Letters, 2024, 35(4): 108884-. doi: 10.1016/j.cclet.2023.108884

    8. [8]

      Menglu GuoYing-Qi SongJunfei ChengGuoqiang DongXun SunChunquan Sheng . Hydrophobic tagging-induced degradation of NAMPT in leukemia cells. Chinese Chemical Letters, 2024, 35(9): 109392-. doi: 10.1016/j.cclet.2023.109392

    9. [9]

      Zimo YangYan TongYongbo LiuQianlong LiuZhihao NiYuna HeYu Rao . Developing selective PI3K degraders to modulate both kinase and non-kinase functions. Chinese Chemical Letters, 2024, 35(11): 109577-. doi: 10.1016/j.cclet.2024.109577

    10. [10]

      Lang GaoCen ZhouRui WangFeng LanBohang AnXiaozhou HuangXiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832

    11. [11]

      Shehla KhalidMuhammad BilalNasir RasoolMuhammad Imran . Photochemical reactions as synthetic tool for pharmaceutical industries. Chinese Chemical Letters, 2024, 35(9): 109498-. doi: 10.1016/j.cclet.2024.109498

    12. [12]

      Yinyin XuYuanyuan LiJingbo FengChen WangYan ZhangYukun WangXiuwen Cheng . Covalent organic frameworks doped with manganese-metal organic framework for peroxymonosulfate activation. Chinese Chemical Letters, 2024, 35(4): 108838-. doi: 10.1016/j.cclet.2023.108838

    13. [13]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    14. [14]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    15. [15]

      Yuhao MaYufei ZhouMingchuan YuCheng FangShaoxia YangJunfeng Niu . Covalently bonded ternary photocatalyst comprising MoSe2/black phosphorus nanosheet/graphitic carbon nitride for efficient moxifloxacin degradation. Chinese Chemical Letters, 2024, 35(9): 109453-. doi: 10.1016/j.cclet.2023.109453

    16. [16]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    17. [17]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    18. [18]

      Xingmin ChenYunyun WuYao TangPeishen LiShuai GaoQiang WangWen LiuSihui Zhan . Construction of Z-scheme Cu-CeO2/BiOBr heterojunction for enhanced photocatalytic degradation of sulfathiazole. Chinese Chemical Letters, 2024, 35(7): 109245-. doi: 10.1016/j.cclet.2023.109245

    19. [19]

      Bicheng Zhu Jingsan Xu . S-scheme heterojunction photocatalyst for H2 evolution coupled with organic oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100327-100327. doi: 10.1016/j.cjsc.2024.100327

    20. [20]

      Kaihui Huang Boning Feng Xinghua Wen Lei Hao Difa Xu Guijie Liang Rongchen Shen Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204

Metrics
  • PDF Downloads(0)
  • Abstract views(840)
  • HTML views(27)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return