Citation: Peng-Xia Liang, Dong Wang, Zong-Cheng Miao, Zhao-Kui Jin, Huai Yang, Zhou Yang. Spectral and self-assembly properties of a series of asymmetrical pyrene derivatives[J]. Chinese Chemical Letters, ;2014, 25(2): 237-242. shu

Spectral and self-assembly properties of a series of asymmetrical pyrene derivatives

  • Corresponding author: Dong Wang,  Zhou Yang, 
  • Received Date: 14 August 2013
    Available Online: 8 October 2013

    Fund Project: This work was partially supported by Beijing Natural Science Foundation (No. 2122042) (No. 2122042)the National Natural Science Fund for Distinguished Young Scholar (No. 51025313). (No. FRF-TP-09-010B)

  • A series of pyrene derivatives with different asymmetrical substituents were successfully synthesized and characterized. The geometrical electronic structures of the asymmetrical pyrene derivatives were performed by density functional theory (DFT) calculations. The results of photophysical spectra and electrochemical analysis indicated that the optical or electric properties of the pyrene derivatives could be tuned by adjust the π-conjugation lengths of the substituents. Furthermore, through a phase exchange self-assembly method, the highly organized morphologies were observed by SEM.
  • 加载中
    1. [1]

      [1] K.R.J. Thomas, J.T. Lin, Y.T. Tao, et al., Light-emitting carbazole derivatives: potential electroluminescent materials, J. Am. Chem. Soc. 123 (2001) 9404-9411.

    2. [2]

      [2] L. Schmidt-Mende, A. Fechtenkätter, K. Müllen, et al., Efficient organic photovoltaics from soluble discotic liquid crystalline materials, Physica E 14 (2002) 263-267.

    3. [3]

      [3] C.D. Dimitrakopoulos, P.R.L. Malenfant, Organic thin film transistors for large area electronics, Adv. Mater. 14 (2002) 99-117.

    4. [4]

      [4] B. Esembeson, M.L. Scimeca, T. Michinobu, et al., A high-optical quality supramolecular assembly for third-order integrated nonlinear optics, Adv. Mater. 20 (2008) 4584-4587.

    5. [5]

      [5] A. Yella, H.W. Lee, H.N. Tsao, et al., Porphyrin-sensitized solar cells with cobalt (II/Ⅲ)-based redox electrolyte exceed 12 percent efficiency, Science 334 (2011) 629-634.

    6. [6]

      [6] S. Kawata, Y. Kawata, Three-dimensional optical data storage using photochromic materials, Chem. Rev. 100 (2000) 1777-1788.

    7. [7]

      [7] I.D. Tevis, L.C. Palmer, D.J. Herman, Self-assembly and orientation of hydrogenbonded oligothiophene polymorphs at liquid-membrane-liquid interfaces, J. Am. Chem. Soc. 133 (2011) 16486-16494.

    8. [8]

      [8] (a) X.J. Zhang, X.H. Zhang, W.S. Shi, et al., Morphology-controllable synthesis of pyrene nanostructures and its morphology dependence of optical properties, J. Phys. Chem. B 109 (2005) 18777-18780; (b) Z.F. Duan, Z.G. Yang, D.J. Liu, et al., Synthesis of two mono-deoxy β-cyclodextrin derivatives as useful tools for confirming DIBAL-H promoted bis-de-O-methylation mechanism, Chin. Chem. Lett. 22 (2011) 819-822; (c) X.M. Wang, H. Yan, X.L. Feng, et al., 1-Pyrenecarboxaldehyde thiosemicarbazone: a novel fluorescent molecular sensor towards mercury (Ⅱ) ion, Chin. Chem. Lett. 21 (2010) 1124-1128.

    9. [9]

      [9] Y. Wang, H.M. Wang, Y.Q. Liu, et al., 1-Imino nitroxide pyrene for high performance organic field-effect transistors with low operating voltage, J. Am. Chem. Soc. 128 (2006) 13058-13059.

    10. [10]

      [10] W.L. Jia, T.M. Cormick, Q.D. Liu, et al., Diarylamino functionalized pyrene derivatives for use in blue OLEDs and complex formation, J. Mater. Chem. 14 (2004) 3344-3350.

    11. [11]

      [11] (a) E.B. Namdas, A. Ruseckas, I.D. Samuel, et al., Photophysics of fac-tris(2- phenylpyridine) iridium(Ⅲ) cored electroluminescent dendrimers in solution and films, J. Phys. Chem. B 108 (2004) 1570-1577; (b) C.C. Kwok, M.S. Wong, Synthesis and light-emitting properties of difunctional dendritic distyrylstilbenes, Macromolecules 34 (2001) 6821-6830.

    12. [12]

      [12] (a) J.Y. Hu, M. Era, M.R.J. Elsegood, T. Yamato, Synthesis and photophysical properties of pyrene-based light-emitting monomers: highly pure-blue-fluorescent, cruciform-shaped architectures, Eur. J. Org. Chem. 1 (2010) 72-79; (b) H.J. Zhang, X.J. Xu, W.F. Qiu, et al., Unsymmetrical dendrimers as highly efficient light-emitting materials: synthesis, photophysics, and electroluminescence, J. Phys. Chem. C 112 (2008) 13258-13262.

    13. [13]

      [13] S. Bernhardt, M. Kastler, V. Enkelmann, et al., Pyrene as chromophore and electrophore: encapsulation in a rigid polyphenylene shell, Chem. Eur. J. 12 (2006) 6117-6128.

    14. [14]

      [14] Z.J. Zhao, S.M. Chen, J.W.Y. Lam, et al., Pyrene-substituted ethenes: aggregationenhanced excimer emission and highly efficient electroluminescence, J. Mater. Chem. 21 (2011) 7210-7216.

    15. [15]

      [15] D. Wang, T. Michinobu, One-step synthesis of ladder-type fused poly(benzopentalene) derivatives with tunable energy levels by variable substituents, J. Polym. Sci. Part A: Polym. Chem. 49 (2011) 72-75.

    16. [16]

      [16] G. Venkataramana, S. Sankararaman, Synthesis, absorption, and fluorescenceemission properties of 1,3,6,8-tetraethynylpyrene and its derivative, Eur. J. Org. Chem. (2005) 4162-4166.

    17. [17]

      [17] S.Y. Chen, X.J. Xu, Y.Q. Liu, et al., New organic light-emitting materials: synthesis, thermal, photophysical, electrochemical, and electroluminescent properties, J. Phys. Chem. C 111 (2007) 1029-1031.

    18. [18]

      [18] M. Beinhoff, W. Weigel, M. Jurczok, et al., Synthesis and spectroscopic properties of arene-substituted pyrene derivatives as model compounds for fluorescent polarity probes, Eur. J. Org. Chem. 20 (2001) 3819-3829.

    19. [19]

      [19] Y.S. Kim, S.Y. Bae, K.H. Kim, et al., Highly sensitive phototransistor with crystalline microribbons from new p-extended pyrene derivative via solution-phase selfassembly, Chem. Commun. 47 (2011) 8907-8909.

    20. [20]

      [20] J.D. Hartgerink, E.R. Zubarev, S.I. Stupp, et al., Supramolecular one-dimensional objects, Curr. Opin. Solid State Mater. Sci. 5 (2001) 355-361.

    21. [21]

      [21] M. Supur, Y. Yamada, M.E. El-Khouly, et al., Electron delocalization in onedimensional perylenediimide nanobelts through photoinduced electron transfer, J. Phys. Chem. C 115 (2011) 15040-15047.

  • 加载中
    1. [1]

      Rongxin ZhuShengsheng YuXuanzong YangRuyu ZhuHui LiuKaikai NiuLingbao Xing . Construction of pyrene-based hydrogen-bonded organic frameworks as photocatalysts for photooxidation of styrene in water. Chinese Chemical Letters, 2024, 35(10): 109539-. doi: 10.1016/j.cclet.2024.109539

    2. [2]

      Sifan DuYuan WangFulin WangTianyu WangLi ZhangMinghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256

    3. [3]

      Yuwen ZhuXiang DengYan WuBaode ShenLingyu HangYuye XueHailong Yuan . Formation mechanism of herpetrione self-assembled nanoparticles based on pH-driven method. Chinese Chemical Letters, 2025, 36(1): 109733-. doi: 10.1016/j.cclet.2024.109733

    4. [4]

      Jingqi XinShupeng HanMeichen ZhengChenfeng XuZhongxi HuangBin WangChangmin YuFeifei AnYu Ren . A nitroreductase-responsive nanoprobe with homogeneous composition and high loading for preoperative non-invasive tumor imaging and intraoperative guidance. Chinese Chemical Letters, 2024, 35(7): 109165-. doi: 10.1016/j.cclet.2023.109165

    5. [5]

      Keyang LiYanan WangYatao XuGuohua ShiSixian WeiXue ZhangBaomei ZhangQiang JiaHuanhua XuLiangmin YuJun WuZhiyu He . Flash nanocomplexation (FNC): A new microvolume mixing method for nanomedicine formulation. Chinese Chemical Letters, 2024, 35(10): 109511-. doi: 10.1016/j.cclet.2024.109511

    6. [6]

      Xuanyu WangZhao GaoWei Tian . Supramolecular confinement effect enabling light-harvesting system for photocatalytic α-oxyamination reaction. Chinese Chemical Letters, 2024, 35(11): 109757-. doi: 10.1016/j.cclet.2024.109757

    7. [7]

      Xian YanHuawei XieGao WuFang-Xing Xiao . Boosted solar water oxidation steered by atomically precise alloy nanocluster. Chinese Chemical Letters, 2025, 36(1): 110279-. doi: 10.1016/j.cclet.2024.110279

    8. [8]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    9. [9]

      Cheng-Yan WuYi-Nan GaoZi-Han ZhangRui LiuQuan TangZhong-Lin Lu . Enhancing self-assembly efficiency of macrocyclic compound into nanotubes by introducing double peptide linkages. Chinese Chemical Letters, 2024, 35(11): 109649-. doi: 10.1016/j.cclet.2024.109649

    10. [10]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    11. [11]

      Zengchao GuoWeiwei LiuTengfei LiuJinpeng WangHui JiangXiaohui LiuYossi WeizmannXuemei Wang . Engineered exosome hybrid copper nanoscale antibiotics facilitate simultaneous self-assembly imaging and elimination of intracellular multidrug-resistant superbugs. Chinese Chemical Letters, 2024, 35(7): 109060-. doi: 10.1016/j.cclet.2023.109060

    12. [12]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    13. [13]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    14. [14]

      Changhui YuPeng ShangHuihui HuYuening ZhangXujin QinLinyu HanCaihe LiuXiaohan LiuMinghua LiuYuan GuoZhen Zhang . Evolution of template-assisted two-dimensional porphyrin chiral grating structure by directed self-assembly using chiral second harmonic generation microscopy. Chinese Chemical Letters, 2024, 35(10): 109805-. doi: 10.1016/j.cclet.2024.109805

    15. [15]

      Bing NiuHonggao HuangLiwei LuoLi ZhangJianbo Tan . Coating colloidal particles with a well-defined polymer layer by surface-initiated photoinduced polymerization-induced self-assembly and the subsequent seeded polymerization. Chinese Chemical Letters, 2025, 36(2): 110431-. doi: 10.1016/j.cclet.2024.110431

    16. [16]

      Yi ZhouWei ZhangRong FuJiaxin DongYuxuan LiuZihang SongHan HanKang Cai . Self-assembly of two pairs of homochiral M2L4 coordination capsules with varied confined space using Tröger's base ligands. Chinese Chemical Letters, 2025, 36(2): 109865-. doi: 10.1016/j.cclet.2024.109865

    17. [17]

      Junying ZhangRuochen LiHaihua WangWenbing KangXing-Dong Xu . Photo-induced tunable luminescence from an aggregated amphiphilic ethylene-pyrene derivative in aqueous media. Chinese Chemical Letters, 2024, 35(6): 109216-. doi: 10.1016/j.cclet.2023.109216

    18. [18]

      Xingwen Cheng Haoran Ren Jiangshan Luo . Boosting the self-trapped exciton emission in vacancy-ordered double perovskites via supramolecular assembly. Chinese Journal of Structural Chemistry, 2024, 43(6): 100306-100306. doi: 10.1016/j.cjsc.2024.100306

    19. [19]

      Zhiwen Li Jingjing Zhang Gao Li . Dynamic assembly of chiral golden knots. Chinese Journal of Structural Chemistry, 2024, 43(7): 100300-100300. doi: 10.1016/j.cjsc.2024.100300

    20. [20]

      Xin LiZhen XuDonglei BuJinming CaiHuamei ChenQi ChenTing ChenFang ChengLifeng ChiWenjie DongZhenchao DongShixuan DuQitang FanXing FanQiang FuSong GaoJing GuoWeijun GuoYang HeShimin HouYing JiangHuihui KongBaojun LiDengyuan LiJie LiQing LiRuoning LiShuying LiYuxuan LinMengxi LiuPeinian LiuYanyan LiuJingtao LüChuanxu MaHaoyang PanJinLiang PanMinghu PanXiaohui QiuZiyong ShenShijing TanBing WangDong WangLi WangLili WangTao WangXiang WangXingyue WangXueyan WangYansong WangYu WangKai WuWei XuNa XueLinghao YanFan YangZhiyong YangChi ZhangXue ZhangYang ZhangYao ZhangXiong ZhouJunfa ZhuYajie ZhangFeixue GaoYongfeng Wang . Recent progress on surface chemistry Ⅰ: Assembly and reaction. Chinese Chemical Letters, 2024, 35(12): 110055-. doi: 10.1016/j.cclet.2024.110055

Metrics
  • PDF Downloads(0)
  • Abstract views(658)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return