Citation: Dong-Ju Zhou, Li-Bo Dai, Hui Ni, Gen-Lei Hui, Si-Guo Yuan. Preparation and characterization of polyphenylene sulfide-based chelating fibers[J]. Chinese Chemical Letters, ;2014, 25(2): 221-225. shu

Preparation and characterization of polyphenylene sulfide-based chelating fibers

  • Corresponding author: Si-Guo Yuan, 
  • Received Date: 22 July 2013
    Available Online: 6 November 2013

    Fund Project: We gratefully acknowledge generous support by the National Natural Science Foundation of China (No. 20574063) (No. 20574063) Doctoral Foundation of Ministry of Education of China (No. 20104101110005). (No. 20104101110005)

  • A series of novel chelating fibers containing sulfur, nitrogen, oxygen heteroatoms were prepared via the functionalization of chloromethylated polyphenylene sulfide (CMPPS). The structures, micromorphology and physicochemical properties of these fibrous adsorptive materials were characterized by FT-IR, elementary analysis, TG and SEM-EDS. The results show that chelating fibers had high functional group contents (3.94 mmol/g for thiourea, 3.85 mmol/g for mercapto, 5.00 mmol/g for methylamine and 6.07 mmol/g for ethylenediamine, respectively). Owing to the unique matrix of polyphenylene sulfide fiber, these fibrous adsorbents possess excellent thermostability. This syntheticmethod proved a simple and efficient way for the preparation of chelating fibers.
  • 加载中
    1. [1]

      [1] Y. Sun, Z.C. Li, Y. Xu, Preparation and application of a novel orotic acid chelating resin for removal of Cu(Ⅱ) in aqueous solutions, Chin. Chem. Lett. 24 (2013) 747- 750.

    2. [2]

      [2] S. Kagaya, E. Maeba, Y. Inoue, et al., A solid phase extraction using a chelate resin immobilizing carboxymethylated pentaethylenehexamine for separation and preconcentration of trace elements in water samples, Talanta 79 (2009) 146-152.

    3. [3]

      [3] S. Kagaya, H. Miyazaki, Y. Inoue, et al., Chelating fibers prepared with a wet spinning technique using a mixture of a viscose solution and a polymer ligand for the separation of metal ions in an aqueous solution, J. Hazard. Mater. 203-204 (2012) 370-373.

    4. [4]

      [4] M. Monier, N. Nawar, D.A. Abdel-Latif, Preparation and characterization of chelating fibers based on natural wool for removal Hg(Ⅱ), Cu(Ⅱ) and Co(Ⅱ) metal ions from aqueous solution, J. Hazard. Mater. 184 (2010) 118-125.

    5. [5]

      [5] Y. Tian, M. Wu, R.G. Liu, et al., Modified native cellulose fibers - a novel efficient adsorbent for both fluoride and arsenic, J. Hazard. Mater. 185 (2011) 93-100.

    6. [6]

      [6] L. Xu, J.N. Wang, Y. Meng, A.M. Li, Fast removal of heavy metal ions and phytic acids from water using new modified chelating fiber, Chin. Chem. Lett. 23 (2012) 105-108.

    7. [7]

      [7] A. Jyo, J.Y. Hamabe, H. Matsuura, et al., Preparation of bifunctional chelating fiber containing iminodi(methylphosphonate) and sulfonate and its performances in column-mode uptake of Cu(Ⅱ) and Zn(Ⅱ), React. Funct. Polym. 70 (2010) 508-515.

    8. [8]

      [8] K. Ikeda, D. Umeno, K. Sario, et al., Removal of boron using nylon-based chelating fibers, Ind. Eng. Chem. Res. 50 (2011) 5727-5732.

    9. [9]

      [9] L.H. Zhang, X.S. Zhang, P.P. Li, W.Q. Zhang, Effective Cd2+ chelating fiber based on polyacrylonitrile, React. Funct. Polym. 69 (2009) 48-54.

    10. [10]

      [10] Y. Meng, J.N. Wang, L. Xu, A.M. Li, Fast removal of Pb2+ from water using new chelating fiber modified with acylamino and amino groups, Chin. Chem. Lett. 23 (2012) 496-499.

    11. [11]

      [11] X.R. Li, J.J. Huang, S.G. Yuan, Preparation of polyphenylene sulfide strong acid ion exchange fiber and the adsorption properties for Cr(Ⅲ), Polym. Mater. Sci. Eng. 28 (2012) 145-149.

    12. [12]

      [12] J.J. Huang, X. Zhang, L.L. Bai, S.G. Yuan, Polyphenylene sulfide based anion exchange fiber: synthesis, characterization and adsorption of Cr(VI), J. Environ. Sci. 24 (2012) 1433-1438.

    13. [13]

      [13] L.Q. Yang, Y.F. Li, X.L. Jin, et al., Synthesis and characterization of a series of chelating resins containing amino/imino-carboxyl groups and their adsorption behavior for lead in aqueous phase, Chem. Eng. J. 168 (2011) 115-124.

    14. [14]

      [14] Q.S. Ren, W.Q. Huang, B.L. He, Synthesis of polystyrylsulfonylthiourea resin and its chelate property for Au3+ ion, Ion Exch. Adsorp. 5 (1989) 131-134.

    15. [15]

      [15] X.M. Wu, C.H. Xiong, Z.N. Shu, Adsorption of silver onto thiol-resin and its mechanism, J. Chem. Ind. Eng. 54 (2003) 1466-1469.

    16. [16]

      [16] A. Wolowicz, Z. Hubicki, The use of the chelating resin of a new generation Lewatit Monoplus TP-220 with the bis-picolylamine functional groups in the removal of selected metal ions from acidic solutions, Chem. Eng. J. 197 (2012) 493-508.

    17. [17]

      [17] L. Niu, S.B. Deng, G. Yu, J. Huang, Efficient removal of Cu(Ⅱ), Pb(Ⅱ), Cr(VI) and As(V) from aqueous solution using an aminated resin prepared by surface-initiated atom transfer radical polymerization, Chem. Eng. J. 165 (2010) 751-757.

    18. [18]

      [18] N.F. Ma, Y. Yang, S.X. Chen, Q.K. Zhang, Preparation of amine group-containing chelating fiber for thorough removal of mercury ions, J. Hazard. Mater. 171 (2009) 288-293.

  • 加载中
    1. [1]

      Wen-Tao OuyangJun JiangYan-Fang JiangTing LiYuan-Yuan LiuHong-Tao JiLi-Juan OuWei-Min He . Sono-photocatalytic amination of quinoxalin-2(1H)-ones with aliphatic amines. Chinese Chemical Letters, 2024, 35(10): 110038-. doi: 10.1016/j.cclet.2024.110038

    2. [2]

      Chong-Yang ShiJian-Xing GongZhen LiChao ShuLong-Wu YeQing SunBo ZhouXin-Qi Zhu . Gold-catalyzed intermolecular amination of allyl azides with ynamides: Efficient construction of 3-azabicyclo[3.1.0] scaffold. Chinese Chemical Letters, 2025, 36(2): 109895-. doi: 10.1016/j.cclet.2024.109895

    3. [3]

      Boqiang WangYongzhuo XuJiajia WangMuyang YangGuo-Jun DengWen Shao . Transition-metal free trifluoromethylimination of alkenes enabled by direct activation of N-unprotected ketimines. Chinese Chemical Letters, 2024, 35(9): 109502-. doi: 10.1016/j.cclet.2024.109502

    4. [4]

      Pengcheng SuShizheng ChenZhihong YangNingning ZhongChenzi JiangWanbin Li . Vapor-phase postsynthetic amination of hypercrosslinked polymers for efficient iodine capture. Chinese Chemical Letters, 2024, 35(9): 109357-. doi: 10.1016/j.cclet.2023.109357

    5. [5]

      Shiqi XuZi YeShuang ShangFengge WangHuan ZhangLianguo ChenHao LinChen ChenFang HuaChong-Jing Zhang . Pairs of thiol-substituted 1,2,4-triazole-based isomeric covalent inhibitors with tunable reactivity and selectivity. Chinese Chemical Letters, 2024, 35(7): 109034-. doi: 10.1016/j.cclet.2023.109034

    6. [6]

      Xudong ZhaoYuxuan WangXinxin GaoXinli GaoMeihua WangHongliang HuangBaosheng Liu . Anchoring thiol-rich traps in 1D channel wall of metal-organic framework for efficient removal of mercury ions. Chinese Chemical Letters, 2025, 36(2): 109901-. doi: 10.1016/j.cclet.2024.109901

    7. [7]

      Pei CaoYilan WangLejian YuMiao WangLiming ZhaoXu Hou . Dynamic asymmetric mechanical responsive carbon nanotube fiber for ionic logic gate. Chinese Chemical Letters, 2024, 35(6): 109421-. doi: 10.1016/j.cclet.2023.109421

    8. [8]

      Yihong LiZhong QiuLei HuangShenghui ShenPing LiuHaomiao ZhangFeng CaoXinping HeJun ZhangYang XiaXinqi LiangChen WangWangjun WanYongqi ZhangMinghua ChenWenkui ZhangHui HuangYongping GanXinhui Xia . Plasma enhanced reduction method for synthesis of reduced graphene oxide fiber/Si anode with improved performance. Chinese Chemical Letters, 2024, 35(11): 109510-. doi: 10.1016/j.cclet.2024.109510

    9. [9]

      Manman OuYunjian ZhuJiahao LiuZhaoxuan LiuJianjun WangJun SunChuanxiang QinLixing Dai . Polyvinyl alcohol fiber with enhanced strength and modulus and intense cyan fluorescence based on covalently functionalized graphene quantum dots. Chinese Chemical Letters, 2025, 36(2): 110510-. doi: 10.1016/j.cclet.2024.110510

    10. [10]

      Jian HanLi-Li ZengQin-Yu FeiYan-Xiang GeRong-Hui HuangFen-Er Chen . Recent advances in remote C(sp3)–H functionalization via chelating group-assisted metal-catalyzed chain-walking reaction. Chinese Chemical Letters, 2024, 35(11): 109647-. doi: 10.1016/j.cclet.2024.109647

    11. [11]

      Ning DINGSiyu WANGShihua YUPengcheng XUDandan HANDexin SHIChao ZHANG . Crystalline and amorphous metal sulfide composite electrode materials with long cycle life: Preparation and performance of hybrid capacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1784-1794. doi: 10.11862/CJIC.20240146

    12. [12]

      Shudi YuJie LiJiongting YinWanyu LiangYangping ZhangTianpeng LiuMengyun HuYong WangZhengying WuYuefan ZhangYukou Du . Built-in electric field and core-shell structure of the reconstructed sulfide heterojunction accelerated water splitting. Chinese Chemical Letters, 2024, 35(12): 110068-. doi: 10.1016/j.cclet.2024.110068

    13. [13]

      Weixu Li Yuexin Wang Lin Li Xinyi Huang Mengdi Liu Bo Gui Xianjun Lang Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299

    14. [14]

      Yue Zheng Tianpeng Huang Pengxian Han Jun Ma Guanglei Cui . Cathodal Li-ion interfacial transport in sulfide-based all-solid-state batteries: Challenges and improvement strategies. Chinese Journal of Structural Chemistry, 2024, 43(10): 100390-100390. doi: 10.1016/j.cjsc.2024.100390

    15. [15]

      Han YanJingming YaoZhangran YeQiaoquan LinZiqi ZhangShulin LiDawei SongZhenyu WangChuang YuLong Zhang . Al-F co-doping towards enhanced electrolyte-electrodes interface properties for halide and sulfide solid electrolytes. Chinese Chemical Letters, 2025, 36(1): 109568-. doi: 10.1016/j.cclet.2024.109568

    16. [16]

      Jiahao XieJin LiuBin LiuXin MengZhuang CaiXiaoqin XuCheng WangShijie YouJinlong Zou . Yolk shell-structured pyrite-type cobalt sulfide grafted by nitrogen-doped carbon-needles with enhanced electrical conductivity for oxygen electrocatalysis. Chinese Chemical Letters, 2024, 35(7): 109236-. doi: 10.1016/j.cclet.2023.109236

    17. [17]

      Yaping WangPengcheng YuanZeyuan XuXiong-Xiong LiuShengfa FengMufan CaoChen CaoXiaoqiang WangLong PanZheng-Ming Sun . Ti3C2Tx MXene in-situ transformed Li2TiO3 interface layer enabling 4.5 V-LiCoO2/sulfide all-solid-state lithium batteries with superior rate capability and cyclability. Chinese Chemical Letters, 2024, 35(6): 108776-. doi: 10.1016/j.cclet.2023.108776

Metrics
  • PDF Downloads(0)
  • Abstract views(820)
  • HTML views(43)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return