Citation: Jing-Hui Lyu, Xiao-Bo He, Chun-Shan Lu, Lei Ma, Qun-Feng Zhang, Feng Feng, Xiao-Nian Li, Jian-Guo Wang. The promoting role of minor amount of water in solvent-free hydrogenation of halogenated nitrobenzenes[J]. Chinese Chemical Letters, ;2014, 25(2): 205-208. shu

The promoting role of minor amount of water in solvent-free hydrogenation of halogenated nitrobenzenes

  • Corresponding author: Xiao-Nian Li,  Jian-Guo Wang, 
  • Received Date: 7 September 2013
    Available Online: 10 October 2013

    Fund Project: Zhejiang Provincial Natural Science Foundation of China (No. LY12B03005). (973 Program)

  • This study shows that minor amount of water plays a very important role in solvent-free hydrogenation of halogenated nitrobenzenes. For dried sponge Pd, the reaction cannot occur in the absence of water. For Pd/C catalyst, minor amount of water reduces the induction time, increases the reaction rate and reaction TOFs. Water might enhance the diffusion, adsorption and dissociation of H2 on Pd catalysts.
  • 加载中
    1. [1]

      [1] G.Y. Fan, L. Zhang, H.Y. Fu, et al., Hydrous zirconia supported iridium nanoparticles: an excellent catalyst for the hydrogenation of haloaromatic nitro compounds, Catal. Commun. 11 (2010) 451-455.

    2. [2]

      [2] X.D. Wang, M.H. Liang, H.Q. Liu, Y. Wang, Selective hydrogenation of bromonitrobenzenes over Pt/gamma-Fe2O3, J. Mol. Catal. A-Chem. 273 (2007) 160-168.

    3. [3]

      [3] C. Feng, H.Y. Zhang, N.Z. Shang, S.T. Gao, C. Wang, Magnetic graphene nanocomposite as an efficient catalyst for hydrogenation of nitroarenes, Chin. Chem. Lett. 24 (2013) 539-541.

    4. [4]

      [4] X. Yuan, N. Yan, C.X. Xiao, et al., Highly selective hydrogenation of aromatic chloronitro compounds to aromatic chloroamines with ionic-liquid-like copolymer stabilized platinum nanocatalysts in ionic liquids, Green Chem. 12 (2010) 228-233.

    5. [5]

      [5] M.H. Liang, X.D. Wang, H.Q. Liu, H.C. Liu, Y. Wang, Excellent catalytic properties over nanocomposite catalysts for selective hydrogenation of halonitrobenzenes, J. Catal. 255 (2008) 335-342.

    6. [6]

      [6] C.H. Liang, J.G. Han, K.H. Shen, et al., Palladium nanoparticle microemulsions: Formation and use in catalytic hydrogenation of o-chloronitrobenzene, Chem. Eng. J. 165 (2010) 709-713.

    7. [7]

      [7] H.Q. Liu, M.H. Liang, C. Xiao, et al., An excellent Pd-based nanocomposite catalyst for the selective hydrogenation of para-chloronitrobenzene, J. Mol. Catal. A-Chem. 308 (2009) 79-86.

    8. [8]

      [8] L.M. Sikhwivhilu, N.J. Coville, B.M. Pulimaddi, J. Venkatreddy, V. Vishwanathan, Selective hydrogenation of o-chloronitrobenzene over palladium supported nanotubular titanium dioxide derived catalysts, Catal. Commun. 8 (2007) 1999-2006.

    9. [9]

      [9] X.C. Meng, H.Y. Cheng, S. Fujita, et al., Selective hydrogenation of chloronitrobenzene to chloroaniline in supercritical carbon dioxide over Ni/TiO2: significance of molecular interactions, J. Catal. 269 (2010) 131-139.

    10. [10]

      [10] X.X. Han, H.R. Li, R.M. Zhou, Effect of rare earths on selective hydrogenation of pchloronitrobenzene over PtMOx/CNTs catalysts, Chin. Chem. Lett. 20 (2009) 96-98.

    11. [11]

      [11] M. Sankar, N. Dimitratos, P.J. Miedziak, et al., Designing bimetallic catalysts for a green and sustainable future, Chem. Soc. Rev. 41 (2012) 8099-8139.

    12. [12]

      [12] L. Kesavan, R. Tiruvalam, M.H. Ab Rahim, et al., Solvent-free oxidation of primary carbon-hydrogen bonds in toluene using Au-Pd alloy nanoparticles, Science 331 (2011) 195-199.

    13. [13]

      [13] L. Ma, S. Chen, C.S. Lu, Q.F. Zhang, X.N. Li, Highly selective hydrogenation of 3,4- dichloronitrobenzene over Pd/C catalysts without inhibitors, Catal. Today 173 (2011) 62-67.

    14. [14]

      [14] C.S. Lu, J.H. Lv, L. Ma, et al., Highly selective hydrogenation of halonitroaromatics to aromatic haloamines by ligand modified Ni-based catalysts, Chin. Chem. Lett. 23 (2012) 545-548.

    15. [15]

      [15] C. Su, X.N. Li, Q.F. Zhang, et al., Behavior of adsorbed diphenyl-sulfide on the Pd/C catalyst for o-chloronitrobenzene hydrogenation, Chin. Chem. Lett. 24 (2013) 59- 62.

    16. [16]

      [16] C. Lian, H.Q. Liu, C. Xiao, et al., Solvent-free selective hydrogenation of chloronitrobenzene to chloroaniline over a robust Pt/Fe3O4 catalyst, Chem. Commun. 48 (2012) 3124-3126.

    17. [17]

      [17] M. Pietrowski, M. Zielinski, M. Wojciechowska, Selective reduction of chloronitrobenzene to chloroaniline on Ru/MgF2 catalysts, Catal. Lett. 128 (2009) 31-35.

    18. [18]

      [18] J. Ning, J. Xu, J. Liu, et al., A remarkable promoting effect of water addition on selective hydrogenation of p-chloronitrobenzene in ethanol, Catal. Commun. 8 (2007) 1763-1766.

    19. [19]

      [19] H.Y. Cheng, X.C. Meng, Y.C. Yu, F.Y. Zhao, The effect of water on the hydrogenation of o-chloronitrobenzene in ethanol, n-heptane and compressed carbon dioxide, Appl. Catal. A-Gen. 455 (2013) 8-15.

    20. [20]

      [20] J.Y. Li, L. Ma, X.N. Li, C.S. Lu, H.Z. Liu, Effect of nitric acid, pretreatment on the properties of activated carbon and supported palladium catalysts, Ind. Eng. Chem. Res. 44 (2005) 5478-5482.

    21. [21]

      [21] G. Kresse, J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54 (1996) 11169-11186.

    22. [22]

      [22] H.P. Boehm, Surface oxides on carbon and their analysis: a critical assessment, Carbon 40 (2002) 145-149.

    23. [23]

      [23] R.H. Bradley, M.W. Smith, A. Andreu, M. Falco, Surface studies of novel hydrophobic active carbons, Appl. Surf. Sci. 257 (2011) 2912-2919.

    24. [24]

      [24] B. Coq, F. Figueras, Structure-activity relationships in catalysis by metals: some aspects of particle size, bimetallic and supports effects, Coord. Chem. Rev. 178 (1998) 1753-1783.

    25. [25]

      [25] L.R. Merte, G.W. Peng, R. Bechstein, et al., Water-mediated proton hopping on an iron oxide surface, Science 336 (2012) 889-893.

    26. [26]

      [26] A. Gross, Ab initio molecular dynamics simulations of the adsorption of H-2 on palladium surfaces, ChemPhysChem 11 (2010) 1374-1381.

  • 加载中
    1. [1]

      Rui HUANGShengjie LIUQingyuan WUNanfeng ZHENG . Enhanced selectivity of catalytic hydrogenation of halogenated nitroaromatics by interfacial effects. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 201-212. doi: 10.11862/CJIC.20240356

    2. [2]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    3. [3]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    4. [4]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    5. [5]

      Meiling XuXinyang LiPengyuan LiuJunjun LiuXiao HanGuodong ChaiShuangling ZhongBai YangLiying Cui . A novel and visible ratiometric fluorescence determination of carbaryl based on red emissive carbon dots by a solvent-free method. Chinese Chemical Letters, 2025, 36(2): 109860-. doi: 10.1016/j.cclet.2024.109860

    6. [6]

      Chunhua MaMengjiao LiuSiyu OuyangZhenwei CuiJingjing BiYuqin JiangZhiguo Zhang . Metal-free construction of diverse 1,2,4-triazolo[1,5-a]pyridines on water. Chinese Chemical Letters, 2025, 36(1): 109755-. doi: 10.1016/j.cclet.2024.109755

    7. [7]

      Ming HuangXiuju CaiYan LiuZhuofeng Ke . Base-controlled NHC-Ru-catalyzed transfer hydrogenation and α-methylation/transfer hydrogenation of ketones using methanol. Chinese Chemical Letters, 2024, 35(7): 109323-. doi: 10.1016/j.cclet.2023.109323

    8. [8]

      Fang-Yuan ChenWen-Chao GengKang CaiDong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161

    9. [9]

      Mengjun Zhao Yuhao Guo Na Li Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348

    10. [10]

      Shaoming DongYiming NiuYinghui PuYongzhao WangBingsen Zhang . Subsurface carbon modification of Ni-Ga for improved selectivity in acetylene hydrogenation reaction. Chinese Chemical Letters, 2024, 35(12): 109525-. doi: 10.1016/j.cclet.2024.109525

    11. [11]

      Jinyuan Cui Tingting Yang Teng Xu Jin Lin Kunlong Liu Pengxin Liu . Hydrogen spillover enhances the selective hydrogenation of α,β-unsaturated aldehydes on the Cu-O-Ce interface. Chinese Journal of Structural Chemistry, 2025, 44(1): 100438-100438. doi: 10.1016/j.cjsc.2024.100438

    12. [12]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    13. [13]

      Kun Tang Yu-Wu Zhong . Water reduction by an organic single-chromophore photocatalyst. Chinese Journal of Structural Chemistry, 2024, 43(8): 100376-100376. doi: 10.1016/j.cjsc.2024.100376

    14. [14]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    15. [15]

      Yang Yang Jing-Li Luo Xian-Zhu Fu . Water-oxidation intermediates enabling electrochemical propylene epoxidation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100269-100269. doi: 10.1016/j.cjsc.2024.100269

    16. [16]

      Jinjie LuQikai LiuYuting ZhangYi ZhouYanbo Zhou . Antibacterial performance of cationic quaternary phosphonium-modified chitosan polymer in water. Chinese Chemical Letters, 2024, 35(9): 109406-. doi: 10.1016/j.cclet.2023.109406

    17. [17]

      Wenhao ChenJian DuHanbin ZhangHancheng WangKaicheng XuZhujun GaoJiaming TongJin WangJunjun XueTing ZhiLonglu Wang . Surface treatment of GaN nanowires for enhanced photoelectrochemical water-splitting. Chinese Chemical Letters, 2024, 35(9): 109168-. doi: 10.1016/j.cclet.2023.109168

    18. [18]

      Shuyuan Pan Zehui Yang Fang Luo . Ni-based electrocatalysts for urea assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(8): 100373-100373. doi: 10.1016/j.cjsc.2024.100373

    19. [19]

      Rui Liu Jinbo Pang Weijia Zhou . Monolayer water shepherding supertight MXene/graphene composite films. Chinese Journal of Structural Chemistry, 2024, 43(10): 100329-100329. doi: 10.1016/j.cjsc.2024.100329

    20. [20]

      Xian YanHuawei XieGao WuFang-Xing Xiao . Boosted solar water oxidation steered by atomically precise alloy nanocluster. Chinese Chemical Letters, 2025, 36(1): 110279-. doi: 10.1016/j.cclet.2024.110279

Metrics
  • PDF Downloads(0)
  • Abstract views(750)
  • HTML views(18)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return