Citation: Yan-Xi Cui, Li-Dong Sun, Qi Sun, Lei Shi. Highly selective synthesis of 3-methylindole from glycerol and aniline over Cu/NaY modified by K2O[J]. Chinese Chemical Letters, ;2013, 24(12): 1127-1129. shu

Highly selective synthesis of 3-methylindole from glycerol and aniline over Cu/NaY modified by K2O

  • Corresponding author: Lei Shi, 
  • Received Date: 26 March 2013
    Available Online: 13 June 2013

    Fund Project: We gratefully acknowledge the financial support provided by the National Natural Science Foundation of China (No. 21173110). (No. 21173110)

  • The vapor-phase synthesis of 3-methylindole from glycerol and aniline over Cu/NaY modified by K2O was investigated. The catalysts were characterized by X-ray diffraction (XRD) and the temperatureprogrammed desorption of ammonia (NH3-TPD). The effect of the reaction temperature on the activity and selectivity of Cu/NaY-K2O catalyst was also investigated. The results indicated that the addition of K2O to Cu/NaY increased the selectivity of the catalyst remarkably because the amount of middle-strong acid sites decreased clearly. The decrease of the reaction temperature was beneficial for the increase of 3- methylindole selectivity. Over Cu/NaY-K2O, the selectivity of 3-methylindole reached 75% and the yield of the target product was up to 47% at 220℃. A probable catalytic mechanism for the synthesis of 3- methylindole from glycerol and aniline was proposed.
  • 加载中
    1. [1]

      [1] M. Howe-Grant, Kirk-Othmer Encyclopedia of Chemical Technology, 4th ed, John Wiley & Sons, New York, 1995, pp. 161-162.

    2. [2]

      [2] M. Howe-Grant, Kirk-Othmer Encyclopedia of Chemical Technology, 3rd ed, John Wiley & Sons, New York, 1989, pp. 213-214.

    3. [3]

      [3] B.B. Aggarwal, S. Shishodia, Molecular targets of dietary agents for prevention and therapy of cancer, Biochem. Pharm. 71 (2006) 1397-1421.

    4. [4]

      [4] Z.A. Kaplanclkl, G. Turan-Zitouni, A. Özdemir, G. Revial, New triazole and triazolothiadiazine derivatives as possible antimicrobial agents, Eur. J. Med. Chem. 43 (2008) 155-159.

    5. [5]

      [5] G.R. Humphrey, J.T. Kuethe, Practical methodologies for the synthesis of indoles, Chem. Rev. 106 (2006) 2875-2911.

    6. [6]

      [6] M. Bandini, A. Eichholzer, Catalytic functionalization of indoles in a new dimension, Angew. Chem. Int. Ed. 48 (2009) 9608-9644.

    7. [7]

      [7] C.A. Simoneau, A.M. Strohl, B. Ganem, One-pot synthesis of polysubstituted indoles from aliphatic nitro compounds under mild conditions, Tetrahedron Lett. 48 (2007) 1809-1811.

    8. [8]

      [8] P. Magnus, I.S. Mitchell, Synthesis of 3-methylindoles from N-aryl-N-(3-triisopropylsilylpropargyl) sulfonamides, Tetrahedron Lett. 39 (1998) 4595-4598.

    9. [9]

      [9] C.S. Cho, J.H. Kim, T.J. Kim, S.C. Shim, Ruthenium-catalyzed heteroannulation of anilines with alkanolammonium chlorides leading to indoles, Tetrahedron 57 (2001) 3321-3329.

    10. [10]

      [10] D.V. Gopal, B. Srinivas, V. Durgakumari, M. Subrahmanyam, Vapor-phase alkylation of indole with methanol over zeolites, Appl. Catal. A 224 (2002) 121-128.

    11. [11]

      [11] M. Campanati, S. Franceschini, O. Piccolo, A. Vaccari, Reaction pathway in the vapor-phase synthesis of indole and alkylindoles, J. Catal. 232 (2005) 1-9.

    12. [12]

      [12] W. Sun, D.Y. Liu, H.Y. Zhu, Q. Sun, L. Shi, A new efficient approach to 3-methylindole: vapor-phase synthesis from aniline and glycerol over Cu-based catalyst, Catal. Commun. 12 (2010) 147-150.

    13. [13]

      [13] A. Behr, J. Eilting, K. Irawadi, J. Leschinski, F. Lindner, Improved utilisation of renewable resources: new important derivatives of glycerol, Green Chem. 10 (2008) 13-30.

    14. [14]

      [14] A. Corma, G.W. Huber, L. Sauvanaud, P. O'Connor, Biomass to chemicals: catalytic conversion of glycerol/water mixtures into acrolein, reaction network, J. Catal. 257 (2008) 163-171.

    15. [15]

      [15] C.B. Lu, J.Z. Yao, W.G. Lin, W.L. Song, Study on biomass catalytic pyrolysis for production of bio-gasoline by on-line FTIR, Chin. Chem. Lett. 18 (2007) 445-448.

    16. [16]

      [16] M. Karthik, C.J. Magesh, P.T. Preumal, et al., Zeolite-catalyzed ecofriendly synthesis of vibrindole A and bis(indolyl)methanes, Appl. Catal. A 286 (2005) 137-141.

    17. [17]

      [17] M.A. Alotaibi, E.F. Kozhevnikova, I.V. Kozhevnikov, Hydrogenation of methyl isobutyl ketone over bifunctional Pt-zeolite catalyst, J. Catal. 293 (2012) 141- 144.

    18. [18]

      [18] H.F. Shi, Y.C. Hu, Y. Wang, H. Huang, KNaY-zeolite catalyzed dehydration of methyl lactate, Chin. Chem. Lett. 18 (2007) 476-478.

    19. [19]

      [19] S.Y. Zhang, Q.Y. Liu, G.L. Fan, Highly-dispersed copper-based catalysts from Cu- Zn-Al layered double hydroxide precursor for gas-phase hydrogenation of dimethyl oxalate to ethylene glycol, Catal. Lett. 142 (2012) 1121-1127.

    20. [20]

      [20] D.F. Jin, Z.Y. Hou, L.W. Zhang, X.M. Zheng, Selective synthesis of para-para0- dimethyldiphenylmethane over H-beta zeolite, Catal. Today 131 (2008) 378-384.

    21. [21]

      [21] R.B. Mane, C.V. Rode, Simultaneous glycerol dehydration and in situ hydrogenolysis over Cu-Al oxide under an inert atmosphere, Green Chem. 14 (2012) 2780- 2789.

    22. [22]

      [22] J. Zhao, W.Q. Yu, C. Chen, et al., Ni/NaX: a bifunctional efficient catalyst for selective hydrogenolysis of glycerol, Catal. Lett. 134 (2010) 184-189.

  • 加载中
    1. [1]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    2. [2]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    3. [3]

      Kaihui Huang Boning Feng Xinghua Wen Lei Hao Difa Xu Guijie Liang Rongchen Shen Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204

    4. [4]

      Yuan ZHUXiaoda ZHANGShasha WANGPeng WEITao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232

    5. [5]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    6. [6]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    7. [7]

      Juan GuoMingyuan FangQingsong LiuXiao RenYongqiang QiaoMingju ChaoErjun LiangQilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957

    8. [8]

      Zhijia ZhangShihao SunYuefang ChenYanhao WeiMengmeng ZhangChunsheng LiYan SunShaofei ZhangYong Jiang . Epitaxial growth of Cu2-xSe on Cu (220) crystal plane as high property anode for sodium storage. Chinese Chemical Letters, 2024, 35(7): 108922-. doi: 10.1016/j.cclet.2023.108922

    9. [9]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    10. [10]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    11. [11]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    12. [12]

      Wenhao ChenMuxuan WuHan ChenLue MoYirong Zhu . Cu2Se@C thin film with three-dimensional braided structure as a cathode material for enhanced Cu2+ storage. Chinese Chemical Letters, 2024, 35(5): 108698-. doi: 10.1016/j.cclet.2023.108698

    13. [13]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    14. [14]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    15. [15]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    16. [16]

      Qinyu ZhaoYunchao ZhaoSongjing ZhongZhaoyang YueZhuoheng JiangShaobo WangQuanhong HuShuncheng YaoKaikai WenLinlin Li . Urchin-like piezoelectric ZnSnO3/Cu3P p-n heterojunction for enhanced cancer sonodynamic therapy. Chinese Chemical Letters, 2024, 35(12): 109644-. doi: 10.1016/j.cclet.2024.109644

    17. [17]

      Jinyuan Cui Tingting Yang Teng Xu Jin Lin Kunlong Liu Pengxin Liu . Hydrogen spillover enhances the selective hydrogenation of α,β-unsaturated aldehydes on the Cu-O-Ce interface. Chinese Journal of Structural Chemistry, 2025, 44(1): 100438-100438. doi: 10.1016/j.cjsc.2024.100438

    18. [18]

      Dong-Xue Jiao Hui-Li Zhang Chao He Si-Yu Chen Ke Wang Xiao-Han Zhang Li Wei Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304

    19. [19]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    20. [20]

      Ran Yu Chen Hu Ruili Guo Ruonan Liu Lixing Xia Cenyu Yang Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032

Metrics
  • PDF Downloads(0)
  • Abstract views(617)
  • HTML views(31)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return