Citation: Wei-Li Wan, Yun He, Mei Guan, Xiao-Long Li, Xu Cheng, Yong Wu. Synthesis of the major isomers of Aprepitant and Fosaprepitant[J]. Chinese Chemical Letters, ;2013, 24(12): 1118-1122. shu

Synthesis of the major isomers of Aprepitant and Fosaprepitant

  • Corresponding author: Yong Wu, 
  • Received Date: 13 May 2013
    Available Online: 3 July 2013

    Fund Project:

  • The synthesis of two isomers of Aprepitant (APT) and three isomers of Fosaprepitant (FPT), crucial components for quality control in manufacturing, is described. Herein, three chiral centers in the isomers of Aprepitant are established in high yield by induced crystallization and chiral reduction. Additionally, the isomers of Aprepitant are utilized to synthesize the isomers of Fosaprepitant with the same stereochemistry. All the target compounds were confirmed by elemental analyses, IR, NMR and MS data analysis.
  • 加载中
    1. [1]

      [1] M.M. Zhao, J.M. McNamara, G.J. Ho, et al., Practical asymmetric synthesis of Aprepitant, a potent human NK-1 receptor antagonist, via a stereoselective Lewis acid-catalyzed trans acetalization reaction, J. Org. Chem. 67 (2002) 6743-6747.

    2. [2]

      [2] C. Albany, M.J. Brames, C. Fausel, et al., Randomized, double-blind, placebocontrolled, phase III cross-over study evaluating the oral neurokinin-1 antagonist Aprepitant in combination with a 5HT3 receptor antagonist and dexamethasone in patients with germ cell tumors receiving 5-day cisplatin combination chemotherapy regimens: a hoosier oncology group study, J. Clin. Oncol. 30 (2012) 3998- 4003.

    3. [3]

      [3] M. Miguel, M.A. Juan, C. Rafael, et al., NK-1 receptor antagonists as antitumor drugs: a survey of the literature from 2000 to 2011, Expert Opin. Ther. Patents 22 (2012) 735-746.

    4. [4]

      [4] J. Shreerang, R.A.R. Khan, N. Raji, Novel intermediates for the preparation of highly pure aprepitant or fosaprepitant, PCT Int. Appl. (2012), WO 2012146692A1.

    5. [5]

      [5] N. Kolla, C.R. Elati, M. Arunagiri, et al., An alternative approach to achieve enantiopure (3S)-4-benzyl-3-(4-fluorophenyl)morpholin-2-one: a key intermediate of Aprepitant, an NK1 receptor antagonist, Org. Process Res. Dev. 11 (2007) 455-457.

    6. [6]

      [6] K.M.J. Brands, J.F. Payack, J.D. Rosen, et al., Efficient synthesis of NK1 receptor antagonist aprepitant using a crystallization-induced diastereoselective transformation, J. Am. Chem. Soc. 125 (2003) 2129-2135.

    7. [7]

      [7] S. Gangula, C.R. Elati, S.V. Mudunuru, et al., Synthesis of all enantiomerically pure diastereomers of Aprepitant, Syn. Commun. 40 (2010) 2254-2268.

    8. [8]

      [8] M.S. Ashwood, B.C. Bishop, Chemical synthesis of 1,4-oxazin-2-ones, PCT Int. Appl. (1999), US006046325A.

    9. [9]

      [9] S.R. Shenoy, K.A. Woerpel, Investigations into the role of ion pairing in reactions of heteroatom-substituted cyclic oxocarbenium ions, Org. Lett. 7 (2005) 1157-1160.

    10. [10]

      [10] J.F. Payack, D.L. Hughes, F D.C. Ian, et al., Dimethyltitanocene, Org. Synth. 79 (2002) 19.

    11. [11]

      [11] J.F. Payack, M.A. Huffman, D.C. David L, et al., Dimethyltitanocene: from millimole to kilomole, Org. Process Res. Dev. 8 (2004) 256-259.

    12. [12]

      [12] Physical and spectral data of the target compounds. SSR-APT: Mp: 253-255℃; [α]D25+ 69:1 (c 1.0, methanol); 1H NMR (400 MHz, CD3OD): δ 7.70 (s, 1H), 7.51 (m, 2H), 7.32 (s, 2H), 7.04 (t, 2H, J = 8.7 Hz), 4.94 (q, 1H, J = 6.3 Hz), 4.35 (d, 1H, J = 2.8 Hz), 4.28 (td, 1H, J = 11.5, 2.8 Hz), 3.66 (ddd, 1H, J = 11.5, 3.3, 1.6 Hz), 3.54 (d, 1H, J = 14.3 Hz), 3.48 (d, 1H, J = 2.8 Hz), 2.88 (brd, 1H, J = 11.9 Hz), 2.86 (d, 1H, J = 14.3 Hz), 2.49 (td, 1H, J = 11.9, 3.6 Hz), 1.44 (d, 3H, J = 6.3 Hz); 13C NMR (100 MHz, CDCl3): δ 22.775, 52.302, 53.654, 60.494, 70.536, 73.746, 97.132, 116.080, 116.293, 122.367, 123.306, 126.011, 127.841, 132.401, 132.614, 133.273, 134.204, 147.074, 147.653, 158.764, 162.906, 165.351; HRMS calcd. for C23H21F7N4O3 m/z: 534.1502. Found: 557.1405 [M+Na]+. Anal. Calcd. for C23H21F7N4O3: C, 51.69; H, 3.96; F, 24.88; N, 10.48. Found: C, 51.72; H, 3.98; F, 24.85; N, 10.50. RSR-APT: [α]D25 25 D 37:1 (c 0.68, MeOH) (lit.[7]: [α]D25 25 D 38:52), Mp: 201-204℃; 1H NMR (400 MHz, CD3OD): δ 11.408 (s, 1H), 11.298 (s, 1H), 7.981 (d, 1H, J = 9.6 Hz), 7.927 (s, 2H), 7.622 (m, 2H), 7.169 (t, 2H, J = 8.8 Hz), 4.481 (d, 1H, J = 2.4), 4.732 (q, 1H, J = 6.4 Hz), 3.853 (t, 1H, J = 10.8 Hz), 3.638 (d, 1H, J = 2.4 Hz), 3.475 (d, 1H, J = 10.8 Hz), 2.905 (s, 2H), 2.850 (d, 1H, J = 13.6 Hz), 2.353 (dt, 1H, J = 8.8, J = 2.4 Hz), 1.017 (d, 3H, J = 6.4 Hz); 13C NMR (100 MHz, CDCl3): δ 21.754, 50.805, 59.570, 67.764, 73.114, 96.774, 114.603, 114.843, 121.133, 122.292, 125.000, 128.920, 129.871, 130.201, 130.524, 131.772, 133.761, 144.239, 147.952, 156.571, 160.632, 163.051; HRMS calcd. for C23H21F7N4O3 m/z: 534.1502. Found: 557.1407 [M+Na]+; Anal. Calcd. for C23H21F7N4O3: C, 51.69; H, 3.96; F, 24.88; N, 10.48. Found: C, 51.70; H, 3.95; F, 24.82; N, 10.44. SSR-FPT: Mp: 122-124℃, [α]D25+ 30:3. (c 1.0, methanol); 1H NMR (400 MHz, DMSO-d6): δ 7.814 (s, 1H), 7.532 (m, 2H), 7.340 (s, 2H), 7.049 (t, 2H, J = 8.8 Hz), 5.766-6.121 (brs, 12H), 4.950 (t, 1H, J = 6.4 Hz), 4.309 (d, 1H, J = 2.4 Hz), 4.091 (t, 1H, J = 11.2 Hz), 4.004 (s, 2H), 3.653 (m, 1H), 3.558 (d, 1H, J = 2.4 Hz), 3.453 (m, 10H), 3.406 (d, 1H, J = 14.0 Hz), 3.036 (m, 4H), 2.891 (d, 1H, J = 11.2 Hz), 2.661 (d, 1H, J = 14.0 Hz), 2.528 (s, 6H), 2.330 (dt, 1H, J = 8.8, 2.8 Hz), 1.373 (d, 3H, J = 6.4 Hz); 13C NMR (100 MHz, CDCl3): δ 22.288, 24.739, 33.712, 36.944, 51.157, 52.021, 59.133, 63.680, 68.480, 69.003, 70.227, 71.114, 71.459, 71.754, 114.862, 121.326, 121.986, 124.699, 126.775, 129.973, 130.303, 130.629, 131.299, 133.626, 143.204, 146.838, 156.970, 160.774, 163.199; HRMS calcd. for C37H56F7N6O16P m/z: 1004.3379. Found: 1027.3279 [M+Na]+; Anal. Calcd. for C37H56F7N6O16P: C, 44.52; H, 5.63; F, 13.25; N, 8.41; P, 3.11. RRR-FPT: Mp: 96- 98℃, [α]D25+ 3:8 (c 0.4, methanol); 1H NMR (400 MHz, DMSO-d6): 7.875 (s, 1H), 7.352 (m, 2H), 7.260 (m, 2H), 7.000 (t, 2H, J = 8.4 Hz), 5.023 (t, 1H, J = 6.4 Hz), 4.749 (d, 1H, J = 16.8 Hz), 4.147 (d, 1H, J = 6.4 Hz), 4.004 (s, 2H), 3.907 (d, 1H, J = 11.6 Hz), 3.744 (m, 1H), 3.453 (m, 10H), 3.218 (m, 1H), 3.036 (m, 4H), 2.622 (d, 1H, J = 6.4 Hz), 2.528 (s, 6H), 2.501 (m, 1H), 2.209 (m, 1H), 1.275 (d, 3H, J = 6.4 Hz); 13C NMR (100 MHz, CDCl3): δ 21.368, 27.191, 31.454, 39.322, 50.011, 52.071, 60.113, 62.520, 67.391, 69.053, 71.157, 71.184, 71.229, 71.714, 115.475, 123.133, 126.992, 128.700, 128.755, 129.167, 130.353, 130.721, 131.307, 138.625, 141.252, 142.310, 159.114, 161.241, 163.557; HRMS calcd. for C37H56F7N6O16P m/z: 1004.3379. Found: 1027.3259 [M+Na]+; Anal. Calcd. for C37H56F7N6O16P: C, 44.20; H, 5.59; F, 13.30; N, 8.42; P, 3.09. RSR-FPT: Mp: 142-144℃, [α]D25+ 2:0. (c 0.4, methanol); 1H NMR (400 MHz, DMSO-d6): δ 7.953 (s, 1H), 7.900 (m, 2H), 7.601 (m, 2H), 7.147 (m, 2H), 4.955 (t, 1H, J = 6.4 Hz), 4.700 (m, 2H), 4.004 (s, 2H), 3.832 (m, 2H), 3.167-3.618 (m, 15H), 2.866 (d, 1H, J = 11.6 Hz), 2.775 (d, 1H, J = 13.6 Hz), 2.503 (s, 6H), 2.423 (m, 1H), 1.014 (d, 3H, J = 6.4 Hz); 13C NMR (100 MHz, CDCl3): δ 20.161, 22.554, 36.581, 36.890, 50.657, 55.120, 61.516, 65.717, 65.992, 69.543, 70.250, 71.562, 71.691, 71.887, 116.442, 122.389, 122.806, 125.990, 128.715, 128.900, 130.471, 130.319, 132.469, 138.104, 141.546, 148.314, 159.814, 162.330, 167.102; HRMS calcd. for C37H56F7N6O16P m/z: 1004.3379. Found: 1027.3263 [M+Na]+; Anal. Calcd. for C37H56F7N6O16P: C, 44.48; H, 5.57; F, 13.25; N, 8.39; P, 3.08.

  • 加载中
    1. [1]

      Shuying LiWeiwei ZhuGeXuan SunChongzhen SunZhaojun LiuChenghe XiongMin XiaoGuofeng Gu . Convergent synthesis and immunological study of oligosaccharide derivatives related to galactomannan from Antrodia cinnamomea. Chinese Chemical Letters, 2024, 35(5): 109089-. doi: 10.1016/j.cclet.2023.109089

    2. [2]

      Xu-Hui YueXiang-Wen ZhangHui-Min HeLei QiaoZhong-Ming Sun . Synthesis, chemical bonding and reactivity of new medium-sized polyarsenides. Chinese Chemical Letters, 2024, 35(7): 108907-. doi: 10.1016/j.cclet.2023.108907

    3. [3]

      Ying LiLong-Jie WangYong-Kang ZhouJun LiangBin XiaoJi-Shen Zheng . An improved installation of 2-hydroxy-4-methoxybenzyl (iHmb) method for chemical protein synthesis. Chinese Chemical Letters, 2024, 35(5): 109033-. doi: 10.1016/j.cclet.2023.109033

    4. [4]

      Tian CaoXuyin DingQiwen PengMin ZhangGuoyue Shi . Intelligent laser-induced graphene sensor for multiplex probing catechol isomers. Chinese Chemical Letters, 2024, 35(7): 109238-. doi: 10.1016/j.cclet.2023.109238

    5. [5]

      Ling-Hao ZhaoHai-Wei YanJian-Shuang JiangXu ZhangXiang YuanYa-Nan YangPei-Cheng Zhang . Effective assignment of positional isomers in dimeric shikonin and its analogs by 1H NMR spectroscopy. Chinese Chemical Letters, 2024, 35(5): 108863-. doi: 10.1016/j.cclet.2023.108863

    6. [6]

      Xueling YuLixing FuTong WangZhixin LiuNa NiuLigang Chen . Multivariate chemical analysis: From sensors to sensor arrays. Chinese Chemical Letters, 2024, 35(7): 109167-. doi: 10.1016/j.cclet.2023.109167

    7. [7]

      Qiongqiong WanYanan XiaoGuifang FengXin DongWenjing NieMing GaoQingtao MengSuming Chen . Visible-light-activated aziridination reaction enables simultaneous resolving of C=C bond location and the sn-position isomers in lipids. Chinese Chemical Letters, 2024, 35(4): 108775-. doi: 10.1016/j.cclet.2023.108775

    8. [8]

      Min FuPan HeSen ZhouWenqiang LiuBo MaShiying ShangYaohao LiRuihan WangZhongping Tan . An unexpected stereochemical effect of thio-substituted Asp in native chemical ligation. Chinese Chemical Letters, 2024, 35(8): 109434-. doi: 10.1016/j.cclet.2023.109434

    9. [9]

      Xianxu ChuLu WangJunru LiHui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105

    10. [10]

      Min HuangRu ChengShuai WenLiangtong LiJie GaoXiaohui ZhaoChunmei LiHongyan ZouJian Wang . Ultrasensitive detection of microRNA-21 in human serum based on the confinement effect enhanced chemical etching of gold nanorods. Chinese Chemical Letters, 2024, 35(9): 109379-. doi: 10.1016/j.cclet.2023.109379

    11. [11]

      Lian SunHonglei WangMing MaTingting CaoLeilei ZhangXingui Zhou . Shape and composition evolution of Pt and Pt3M nanocrystals under HCl chemical etching. Chinese Chemical Letters, 2024, 35(9): 109188-. doi: 10.1016/j.cclet.2023.109188

    12. [12]

      Yongjian LiXinyu ZhuChenxi WeiYouyou FangXinyu WangYizhi ZhaiWenlong KangLai ChenDuanyun CaoMeng WangYun LuQing HuangYuefeng SuHong YuanNing LiFeng Wu . Unraveling the chemical and structural evolution of novel Li-rich layered/rocksalt intergrown cathode for Li-ion batteries. Chinese Chemical Letters, 2024, 35(12): 109536-. doi: 10.1016/j.cclet.2024.109536

    13. [13]

      Xue ZhengJizhen XieXing ZhangWeiting SunHeyang ZhaoYantuan LiCheng Wang . Corrigendum to "An overview of polymeric nanomicelles in clinical trials and on the market" [Chinese Chemical Letters 32 (2021) 243-257]. Chinese Chemical Letters, 2025, 36(2): 110545-. doi: 10.1016/j.cclet.2024.110545

    14. [14]

      Huimin Luan Qinming Wu Jianping Wu Xiangju Meng Feng-Shou Xiao . Templates for the synthesis of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100252-100252. doi: 10.1016/j.cjsc.2024.100252

    15. [15]

      Yan WangHuixin ChenFuda YuShanyue WeiJinhui SongQianfeng HeYiming XieMiaoliang HuangCanzhong Lu . Oxygen self-doping pyrolyzed polyacrylic acid as sulfur host with physical/chemical adsorption dual function for lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(7): 109001-. doi: 10.1016/j.cclet.2023.109001

    16. [16]

      Feng-Qing HuangYu WangJi-Wen WangDai YangShi-Lei WangYuan-Ming FanRaphael N. AlolgaLian-Wen Qi . Chemical isotope labeling-assisted liquid chromatography-mass spectrometry enables sensitive and accurate determination of dipeptides and tripeptides in complex biological samples. Chinese Chemical Letters, 2024, 35(11): 109670-. doi: 10.1016/j.cclet.2024.109670

    17. [17]

      Jia-Qi FengXiang TianRui-Ge CaoYong-Xiu LiWen-Long LiuRong HuangSi-Yong QinAi-Qing ZhangYin-Jia Cheng . An AIE-based theranostic nanoplatform for enhanced colorectal cancer therapy: Real-time tumor-tracking and chemical-enhanced photodynamic therapy. Chinese Chemical Letters, 2024, 35(12): 109657-. doi: 10.1016/j.cclet.2024.109657

    18. [18]

      Hui LiuXi XiangJian-Bo HuangBi-Hui ZhuLi-Yun WangYuan-Jiao TangFang-Xue DuLing LiFeng YanLang MaLi Qiu . Corrigendum to "Ultrasound augmenting injectable chemotaxis hydrogel for articular cartilage repair in osteoarthritis" [Chinese Chemical Letters 32 (2021) 1759-1764]. Chinese Chemical Letters, 2025, 36(2): 110562-. doi: 10.1016/j.cclet.2024.110562

    19. [19]

      Zhaojun Liu Zerui Mu Chuanbo Gao . Alloy nanocrystals: Synthesis paradigms and implications. Chinese Journal of Structural Chemistry, 2023, 42(11): 100156-100156. doi: 10.1016/j.cjsc.2023.100156

    20. [20]

      Zhenhao WangYuliang TangRuyu LiShuai TianYu TangDehai Li . Bioinspired synthesis of cochlearol B and ganocin A. Chinese Chemical Letters, 2024, 35(7): 109247-. doi: 10.1016/j.cclet.2023.109247

Metrics
  • PDF Downloads(0)
  • Abstract views(822)
  • HTML views(63)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return