Citation: Huan Luo, Yan-Fei Liu, Chun-Lei Zhang, Yan Wang, Gang Ni, De-Quan Yu. A new method for the synthesis of 3-hydroxymethylbenzofuran[J]. Chinese Chemical Letters, ;2013, 24(12): 1115-1117. shu

A new method for the synthesis of 3-hydroxymethylbenzofuran

  • Corresponding author: De-Quan Yu, 
  • Received Date: 13 May 2013
    Available Online: 14 June 2013

    Fund Project: The project was supported by the National Mega-Project for Innovative Drugs (No. 2012zx09301002-002) (No. 2012zx09301002-002)

  • A new one-step synthesis of 3-hydroxymethylbenzofuran, based on intramolecular cyclization of 2- (methoxymethyl)-2-(2'-methoxymethyl-4'-methylphenyl)-butanone 1 under diluted hydrochloric acid in THF, was developed. The mechanism for this process was investigated via chemical equilibrium shift of tautomer in acidic conditions. The applicability of this new method was studied further in this paper.
  • 加载中
    1. [1]

      [1] J.C. Somberg, (N-alkyl-N-hydroxymethylamino)alkoxybenzoylbenzofurans and the phosphate esters thereof, US Patent 5981514, 1999.

    2. [2]

      [2] G. Orhan, I. Orhanand, B. Sener, Recent developments in natural and synthetic drug research for Alzheimer's disease, Lett. Drug Des. Discov. 3 (2006) 268-274.

    3. [3]

      [3] A. McGechan, K. Wellington, Ramelteon, CNS Drugs 19 (2005) 1057-1065.

    4. [4]

      [4] J. Schuurkes, J. Adrianus, Use of prucalopride for the manufacture of a medicament for the treatment of dyspepsia, Aust Patent 770580B, 2004.

    5. [5]

      [5] R. Hersperger, P. Janser, E. Pfenninger, et al., Preparation of 1H-indole-2-carboxylic acid N-(piperidin-4-yl)amides and related derivatives as chemokine receptor, particularly CCR2 and CCR5 antagonists, WO Patent 2005077932, 2005.

    6. [6]

      [6] W. Eccles, J.M. Blevitt, J.N. Booker, et al., Identification of benzofuran central cores for the inhibition of leukotriene A4 hydrolase, Bioorg. Med. Chem. Lett. 23 (2013) 811-815.

    7. [7]

      [7] A. Fuerstner, P.W. Davies, Heterocycles by PtCl2-catalyzed intramolecular carboalkoxylation or carboamination of alkynes, J. Am. Chem. Soc. 127 (2005) 15024-15025.

    8. [8]

      [8] D.C. Horwell, W. Howson, M. Higginbottom, et al., Quantitative structure-activity relationships (QSARs) of N-terminus fragments of NK1 tachykinin antagonists: a comparison of classical QSARs and three-dimensional QSARs from similarity matrixes, J. Med. Chem. 38 (1995) 4454-4462.

    9. [9]

      [9] A. Shafiee, M. Mohamadpour, Synthesis of 3-formylbenzo[b]furan and 1-methyl- 3,4-dihydrobenzo[b]-furo [2,3-c], J. Heterocycl. Chem. 15 (1978) 481-483.

    10. [10]

      [10] P.V. Podea, M.I. Toşa, C. Paizs, et al., Chemoenzymatic preparation of enantiopure L-benzofuranyl- and L-benzo[b]thiophenyl alanines, Tetrahedron: Asymmetry 19 (2008) 500-511.

    11. [11]

      [11] Analytical data for compound: 3a: 1H NMR (300 MHz, CDCl3): δ 7.58 (m, 1H), 7.39 (m, 1H), 7.23 (m, 2H), 4.74 (s, 2H), 2.45 (s, 3H); 13C NMR (75 MHz, CDCl3): δ 154.2, 153.0, 128.6, 123.8, 122.8, 119.2, 114.4, 110.9, 55.7, 12.3; HR-ESI-MS: calcd. for C10H10NaO2+: 185.0573; found: 185.0579 [M+Na]+. 3b: 1H NMR (300 MHz, CDCl3): δ 7.40 (d, 1H, J = 7.8 Hz), 6.16 (s, 1H), 7.00 (d, 1H, J = 7.8 Hz), 4.64 (s, 2H), 2.42 (s, 3H), 2.37 (s, 3H); 13C NMR (75 MHz, CDCl3): δ 154.5, 152.2, 133.8, 126.1, 124.0, 118.6, 114.2, 111.1, 55.5, 21.7, 12.1; HR-ESI-MS: calcd. for C11H12NaO2+: 199.0730; found 199.0735 [M+Na]+. 3c: 1H NMR (300 MHz, CDCl3): δ 7.51 (d, 1H, J = 7.8 Hz), 7.42 (s, 1H), 7.293 (d, 1H, J = 7.8 Hz), 4.73 (s, 2H), 2.43 (s, 3H), 1.36 s (s, 9H); 13C NMR (75 MHz, CDCl3): δ 154.6, 152.6, 147.8, 125.9, 120.5, 118.5, 114.2, 107.7, 55.8, 35.1, 31.9, 12.3; HR-ESI-MS: calcd. for C14H18NaO2+: 241.1199; found 241.1203 [M+Na]+.

    12. [12]

      [12] Z.Q. Cong, H. Nishino, Synthesis of unusual naphtho[2,1-b]furans and novel 1Hbenz[e]indolinones via selective intramolecular cyclization, Heterocycles 78 (2009) 397-413.

    13. [13]

      [13] 1HNMRdata for compound: 4: 1HNMR(300 MHz, CDCl3): δ 7.82 (brs, 1H), 7.16 (s, 1H), 6.75 (s, 1H), 6.61 (s, 1H), 2.30 (s, 3H), 2.05 (s, 3H), 1.72 (s, 3H). 5: 1H NMR (300 MHz, CDCl3): δ 7.19 (s, 1H), 6.75 (s, 1H), 6.69 (s, 1H), 2.30 (s, 3H), 1.54 (s, 3H), 1.51 (s, 3H).

  • 加载中
    1. [1]

      Jia FuShilong ZhangLirong LiangChunyu DuZhenqiang YeGuangming Chen . PEDOT-based thermoelectric composites: Preparation, mechanism and applications. Chinese Chemical Letters, 2024, 35(9): 109804-. doi: 10.1016/j.cclet.2024.109804

    2. [2]

      Linghui ZouMeng ChengKaili HuJianfang FengLiangxing Tu . Vesicular drug delivery systems for oral absorption enhancement. Chinese Chemical Letters, 2024, 35(7): 109129-. doi: 10.1016/j.cclet.2023.109129

    3. [3]

      Xiaoning LiQuanyu ShiMeng LiNingxin SongYumeng XiaoHuining XiaoTony D. JamesLei Feng . Functionalization of cellulose carbon dots with different elements (N, B and S) for mercury ion detection and anti-counterfeit applications. Chinese Chemical Letters, 2024, 35(7): 109021-. doi: 10.1016/j.cclet.2023.109021

    4. [4]

      Shaojie DengPeihua MaQinghong BaiXin Xiao . The transformation of nor-seco-cucurbit[10]uril to cucurbit[5]uril and cucurbit[8]uril controlled by its own concentration. Chinese Chemical Letters, 2025, 36(2): 109878-. doi: 10.1016/j.cclet.2024.109878

    5. [5]

      Weidan MengYanbo ZhouYi Zhou . Green innovation unleashed: Harnessing tungsten-based nanomaterials for catalyzing solar-driven carbon dioxide conversion. Chinese Chemical Letters, 2025, 36(2): 109961-. doi: 10.1016/j.cclet.2024.109961

    6. [6]

      Ming-Yi SunLu ZhangYa LiChong-Chen WangPeng WangXueying RenXiao-Hong Yi . Recovering Ag+ with nano-MOF-303 to form Ag/AgCl/MOF-303 photocatalyst: The role of stored Cl ions. Chinese Chemical Letters, 2025, 36(2): 110035-. doi: 10.1016/j.cclet.2024.110035

    7. [7]

      Tong Zhou Liyi Xie Chuyu Liu Xiyan Zheng Bao Li . Between Sobriety and Intoxication: The Fascinating Journey of Sauce-Flavored Latte. University Chemistry, 2024, 39(9): 55-58. doi: 10.12461/PKU.DXHX202312048

    8. [8]

      Fengrui YangDebing WangXinying ZhangJie ZhangZhichao WuQiaoying Wang . Synergistic effects of peroxydisulfate on UV/O3 process for tetracycline degradation: Mechanism and pathways. Chinese Chemical Letters, 2024, 35(10): 109599-. doi: 10.1016/j.cclet.2024.109599

    9. [9]

      Chunyan YangQiuyu RongFengyin ShiMenghan CaoGuie LiYanjun XinWen ZhangGuangshan Zhang . Rationally designed S-scheme heterojunction of BiOCl/g-C3N4 for photodegradation of sulfamerazine: Mechanism insights, degradation pathways and DFT calculation. Chinese Chemical Letters, 2024, 35(12): 109767-. doi: 10.1016/j.cclet.2024.109767

    10. [10]

      Bharathi Natarajan Palanisamy Kannan Longhua Guo . Metallic nanoparticles for visual sensing: Design, mechanism, and application. Chinese Journal of Structural Chemistry, 2024, 43(9): 100349-100349. doi: 10.1016/j.cjsc.2024.100349

    11. [11]

      Yuan DongMutian MaZhenyang JiaoSheng HanLikun XiongZhao DengYang Peng . Effect of electrolyte cation-mediated mechanism on electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2024, 35(7): 109049-. doi: 10.1016/j.cclet.2023.109049

    12. [12]

      Hongxia LiXiyang WangDu QiaoJiahao LiWeiping ZhuHonglin Li . Mechanism of nanoparticle aggregation in gas-liquid microfluidic mixing. Chinese Chemical Letters, 2024, 35(4): 108747-. doi: 10.1016/j.cclet.2023.108747

    13. [13]

      Yixin ZhangTing WangJixiang ZhangPengyu LuNeng ShiLiqiang ZhangWeiran ZhuNongyue He . Formation mechanism for stable system of nanoparticle/protein corona and phospholipid membrane. Chinese Chemical Letters, 2024, 35(4): 108619-. doi: 10.1016/j.cclet.2023.108619

    14. [14]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    15. [15]

      Wenzhong ZhangZirui YanLingcheng ChenYi Xiao . Sn-fused perylene diimides: Synthesis, mechanism, and properties. Chinese Chemical Letters, 2024, 35(10): 109582-. doi: 10.1016/j.cclet.2024.109582

    16. [16]

      Hai-Ling Wang Zhong-Hong Zhu Hua-Hong Zou . Structure and assembly mechanism of high-nuclear lanthanide-oxo clusters. Chinese Journal of Structural Chemistry, 2024, 43(9): 100372-100372. doi: 10.1016/j.cjsc.2024.100372

    17. [17]

      Jia-hui Li Jinkai Qiu Cheng Lian . Lithium-ion rapid transport mechanism and channel design in solid electrolytes. Chinese Journal of Structural Chemistry, 2025, 44(1): 100381-100381. doi: 10.1016/j.cjsc.2024.100381

    18. [18]

      Yubang Li Xixi Hu Daiqian Xie . The microscopic formation mechanism of O + H2 products from photodissociation of H2O. Chinese Journal of Structural Chemistry, 2024, 43(5): 100274-100274. doi: 10.1016/j.cjsc.2024.100274

    19. [19]

      Lingna WangChenxin TianRuobin DaiZhiwei Wang . Eco-friendly regeneration of end-of-life PVDF membrane with triethyl phosphate: Efficiency and mechanism. Chinese Chemical Letters, 2024, 35(9): 109356-. doi: 10.1016/j.cclet.2023.109356

    20. [20]

      Xin LiWanting FuRuiqing GuanYue YuanQinmei ZhongGang YaoSheng-Tao YangLiandong JingSong Bai . Nucleophiles promotes the decomposition of electrophilic functional groups of tetracycline in ZVI/H2O2 system: Efficiency and mechanism. Chinese Chemical Letters, 2024, 35(10): 109625-. doi: 10.1016/j.cclet.2024.109625

Metrics
  • PDF Downloads(0)
  • Abstract views(638)
  • HTML views(25)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return