Citation: Rupali L. Magar, Prashant B. Thorat, Pratima B. Thorat, Vinod V. Thorat, Bhagawan R. Patil, Rajendra P. Pawar. Distereoselective one-pot synthesis of pyrimidopyrimidines using sulfated tin oxide as a reusable catalyst: An extension of Biginelli-type reaction[J]. Chinese Chemical Letters, ;2013, 24(12): 1070-1074. shu

Distereoselective one-pot synthesis of pyrimidopyrimidines using sulfated tin oxide as a reusable catalyst: An extension of Biginelli-type reaction

  • Corresponding author: Rajendra P. Pawar, 
  • Received Date: 23 April 2013
    Available Online: 17 June 2013

  • The Biginelli-type compounds 4,5,8a-triarylhexahydropyrimido[4,5-d]pyrimidine-2,7(1H,3H)-diones were synthesized by a one-pot three-component reaction using sulfated tin oxide as a reusable catalyst. This method has the advantages of high yields, short reaction time, simple starting materials and reusability of catalyst for several times.
  • 加载中
    1. [1]

      [1] (a) C.C.A. Cariou, G.J. Clarkson, M. Shipman, Rapid synthesis of 1,3,4,4-tetrasubstituted b-lactams from methyleneaziridines using a four-component reaction, J. Org. Chem. 73 (2008) 9762-9764;

    2. [2]

      (b) H.R. Shaterian, H. Yarahmadi, M. Ghashang, Silica supported perchloric acid (HClO4-SiO2): an efficient and recyclable heterogeneous catalyst for the one-pot synthesis of amidoalkyl naphthols, Tetrahedron 64 (2008) 1263-1269;

    3. [3]

      (c) A. Znabet, E. Ruijter, F.J.J. de Kanter, et al., Highly stereoselective synthesis of substituted prolyl peptides using a combination of biocatalytic desymmetrization and multicomponent reactions, Angew. Chem. Int. Ed. 49 (2010) 5289-5292.

    4. [4]

      [2] (a) A. Domling, I. Ugi, Multicomponent reactions with isocyanides, Angew. Chem. Int. Ed. 39 (2000) 3168-3210;

    5. [5]

      (b) S. Heck, A.A. Domling, Versatile multi-component one-pot thiazole synthesis, Synlett 3 (2000) 424-426.

    6. [6]

      [3] I. Ugi, A. Domling, Multicomponent reactions in organic chemistry, Endeavour 18 (1994) 115-122.

    7. [7]

      [4] (a) E.M. Gordan, R.W. Barrett,W.J. Dower, S.P.A. Fodor,M.A. Gallop, Application of combinatorial technologies to drug discovery. 2. Combinatorial organic synthesis, library screening strategies and future directions, J. Med. Chem. 37 (1994) 1385-1401;

    8. [8]

      (b) A.A. Virgilio, J.A. Ellman, Simultaneous solid-phase synthesis of β-turn mimetics incorporating side-chain functionality, J. Am. Chem. Soc. 116 (1994) 11580-11581;

    9. [9]

      (c) S.M. Freier, D.A.M. Konings, J.R. Wyatt, D.J. Ecker, Deconvolution of combinatorial libraries for drug discovery: a model system, J. Med. Chem. 38 (1995) 344-352.

    10. [10]

      [5] (a) E.K. Kick, J.A. Ellman, Expedient method for the solid-phase synthesis of aspartic acid protease inhibitors directed toward the generation of libraries, J. Med. Chem. 38 (1995) 1427-1430;

    11. [11]

      (b) D.A. Campbell, J.C. Bermak, T.S. Burkoth, D.V. Patel, A transition state analog inhibitor combinatorial library, J. Am. Chem. Soc. 117 (1995) 5381-5382.

    12. [12]

      [6] A.S. Jones, J.R. Sayers, R.T. Walker, E.D. Clercq, Synthesis and antiviral properties of (E)-5-(2-bromovinyl)-2'-deoxycytidine-related compounds, J. Med. Chem. 31 (1988) 268-271.

    13. [13]

      [7] M.B. Deshmukh, S.M. Salunkhe, D.R. Patil, P.V. Anbhule, A novel and efficient one step synthesis of 2-amino-5-cyano-6-hydroxy-4-aryl pyrimidines and their antibacterial activity, Eur. J. Med. Chem. 44 (2009) 2651-2655.

    14. [14]

      [8] C. Gasse, D. Douguet, V. Huteau, et al., Substituted benzyl-pyrimidines targeting thymidine monophosphate kinase of Mycobacterium tuberculosis: synthesis and in vitro anti-mycobacterial activity, Bioorg. Med. Chem. 16 (2008) 6075-6085.

    15. [15]

      [9] R. Lin, S.G. Johnson, P.J. Connolly, et al., Synthesis and evaluation of 2,7-diaminothiazolo[ 4,5-d]pyrimidine analogues as anti-tumor epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors, Bioorg. Med. Chem. Lett. 19 (2009) 2333-2340.

    16. [16]

      [10] E.P.S. Falcao, S.J. Melo, R.M. Srivastava, M.T.J.A. Catanho, S.C. Nascimento, Synthesis and antiinflammatory activity of 4-amino-2-aryl-5-cyano-6-{3- and 4-(Nphthalimidophenyl)} pyrimidines, Eur. J. Med. Chem. 41 (2006) 276-282.

    17. [17]

      [11] Q. Chen, X.L. Zhu, L.L. Jiang, Z.M. Liu, G.F. Yang, Synthesis, antifungal activity and CoMFA analysis of novel 1,2,4-triazolo[1,5-a]pyrimidine derivatives, Eur. J. Med. Chem. 43 (2008) 595-603.

    18. [18]

      [12] G.W. Rewcastle, A.J. Bridges, D.W. Fry, J.R. Rubin, W.A. Denny, Tyrosine kinase inhibitors. 12. Synthesis and structure-activity relationships for 6-substituted 4- (phenylamino)pyrimido[5,4-d]pyrimidines designed as inhibitors of the epidermal growth factor receptor, J. Med. Chem. 40 (1997) 1820-1826.

    19. [19]

      [13] (a) D. Prajapati, P.P. Baruah, B.J. Gogoi1, J.S. Sandhu, One-pot synthesis of novel 1H-pyrimido[4,5-c] [1,2]diazepines and pyrazolo [3,4-d]pyrimidines Beilstein, J. Org. Chem. 2 (2006) 5, http://dx.doi.org/10.1186/1860-5397-2-5;

    20. [20]

      (b) A. Bazgira, M.M. Khanaposhtani, A.A. Soorki, One-pot synthesis and antibacterial activities of pyrazolo[4',3':5,6]pyrido[2,3-d]pyrimidine-dione derivatives, Bioorg. Med. Chem. Lett. 18 (2008) 5800-5803.

    21. [21]

      [14] P. Biginelli, Aldehyde-urea derivatives of aceto- and oxaloacetic acids, Gazz. Chim. Ital. 23 (1893) 360-413.

    22. [22]

      [15] F. Shi, R. Jia, X. Zhang, et al., Extension of the Biginelli-type reaction: one-pot synthesis of pyrimidopyrimidines and spirobi[pyrimidine]s using potassium hydrogen sulfate as a catalyst, Synthesis 18 (2007) 2782-2790.

    23. [23]

      [16] P. Sharma, N. Rane, V.K. Gurram, Synthesis and QSAR studies of pyrimido[4,5- d]pyrimidine-2,5-dione derivatives as potential antimicrobial agents, Bioorg. Med. Chem. Lett. 14 (2004) 4185-4190.

    24. [24]

      [17] M. Dabiri, H. Arvin-Nezhad, H.R. Khavasi, A. Bazgir, Microwave-induced perchloric acid catalyzed novel solvent-free synthesis of 4-aryl-3,4-dihydropyrimidones via Biginelli condensation, J. Heterocycl. Chem. 44 (2007) 1009-1011.

    25. [25]

      [18] (a) M. Hino, K. Atata, Synthesis of solid superacid catalyst with acid strength of H0≤ -16.04, J. Chem. Soc. Chem. Commun. 18 (1980) 851-852;

    26. [26]

      (b) E. Igiesia, S.L. Sale, G.M. Kramer, Isomerization of alkanes on sulfated zirconia: promotion by Pt and by adamantyl hydride transfer species, J. Catal. 144 (1993) 238-253.

    27. [27]

      [19] (a) B.M. Reddy, P.M. Sreekanth, P. Lakshmanan, Sulfated zirconia as an efficient catalyst for organic synthesis and transformation reactions, J. Mol. Cat. A: Chem. 237 (2005) 93-100;

    28. [28]

      (b) B.M. Reddy, P.M. Sreekanth, An efficient synthesis of 1,5-benzodiazepine derivatives catalyzed by a solid superacid sulfated zirconia, Tetrahedron Lett. 44 (2003) 4447-4449;

    29. [29]

      (c) X.B. Li, N. Katsutoshi, J.S. Laurent, O. Roberta, A.L. Johannes, Influence of calcination procedure on the catalytic property of sulfated zirconia, Catal. Lett. 113 (2007) 34-40.

    30. [30]

      [20] J.C. Yori, M.A. Amato, G. Costa, J.M. Perera, Isomerization of n-butane on Pt/So42--ZrO2 and mechanical mixtures of Pt/Al2O3 + SO42--ZrO2, J. Catal. 153 (1995) 218-223.

    31. [31]

      [21] (a) A.I. Ahmed, S.A. El-Hakam, A.S. KHder, W.S.A. El-Yazeed, Nanostructure sulfated tin oxide as an efficient catalyst for the preparation of 7-hydroxy-4- methyl coumarin by Pechmann condensation reaction, J. Mol. Cat. A: Chem. 366 (2013) 99-108;

    32. [32]

      (b) T. Suzuki, T. Yokoi, R. Otomo, J.N. Kondo, T. Tatsumi, Dehydration of xylose over sulfated tin oxide catalyst: influences of the preparation conditions on the structural properties and catalytic performance, Appl. Catal. A: Gen. 408 (2011) 117-124.

    33. [33]

      [22] (a) S.R. Sarda, V.B. Puri, A.B. Rode, et al., Sulfated tin oxides: a suitable reagent for synthesis of 2,4-diphenyl-4,6,7,8-tetrahydrochromen-5-one, Arkivoc 16 (2007) 246-251;

    34. [34]

      (b) S.A. Dake, M.B. Khedkar, G.S. Irmale, et al., Sulfated tin oxide: a reusable and highly efficient heterogeneous catalyst for the synthesis of 2,4,5-triaryl-1Himidazole derivatives, Synth. Commun. 42 (2012) 1509-1520.

    35. [35]

      [23] R.L. Magar, P.B. Thorat, V.B. Jadhav, et al., Silica gel supported polyamine: a versatile catalyst for one pot synthesis of 2-amino-4H- chromene derivatives, J. Mol. Cat. A: Chem. 374-375 (2013) 118-124.

  • 加载中
    1. [1]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    2. [2]

      Yatian DengDao WangJinglan ChengYunkun ZhaoZongbao LiChunyan ZangJian LiLichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141

    3. [3]

      Rong-Nan YiWei-Min He . Photocatalytic Minisci-type multicomponent reaction for the synthesis of 1-(halo)alkyl-3-heteroaryl bicyclo[1.1.1]pentanes. Chinese Chemical Letters, 2024, 35(10): 110115-. doi: 10.1016/j.cclet.2024.110115

    4. [4]

      Bairu MengZongji ZhuoHan YuSining TaoZixuan ChenErik De ClercqChristophe PannecouqueDongwei KangPeng ZhanXinyong Liu . Design, synthesis, and biological evaluation of benzo[4,5]thieno[2,3-d]pyrimidine derivatives as novel HIV-1 NNRTIs. Chinese Chemical Letters, 2024, 35(6): 108827-. doi: 10.1016/j.cclet.2023.108827

    5. [5]

      Chaozheng HeJia WangLing FuWei Wei . Nitric oxide assists nitrogen reduction reaction on 2D MBene: A theoretical study. Chinese Chemical Letters, 2024, 35(5): 109037-. doi: 10.1016/j.cclet.2023.109037

    6. [6]

      Xuhui FanFan WangMengjiao LiFaiza MeharbanYaying LiYuanyuan CuiXiaopeng LiJingsan XuQi XiaoWei Luo . Visible light excitation on CuPd/TiN with enhanced chemisorption for catalyzing Heck reaction. Chinese Chemical Letters, 2025, 36(1): 110299-. doi: 10.1016/j.cclet.2024.110299

    7. [7]

      Jiao ChenZihan ZhangGuojin SunYudi ChengAihua WuZefan WangWenwen JiangFulin ChenXiuying XieJianli Li . Benzo[4,5]imidazo[1,2-a]pyrimidine-based structure-inherent targeting fluorescent sensor for imaging lysosomal viscosity and diagnosis of lysosomal storage disorders. Chinese Chemical Letters, 2024, 35(11): 110050-. doi: 10.1016/j.cclet.2024.110050

    8. [8]

      Wei-Tao DouQing-Wen ZengYan KangHaidong JiaYulian NiuJinglong WangLin Xu . Construction and application of multicomponent fluorescent droplets. Chinese Chemical Letters, 2025, 36(1): 109995-. doi: 10.1016/j.cclet.2024.109995

    9. [9]

      Shuang LiJiayu SunGuocheng LiuShuo ZhangZhong ZhangXiuli Wang . A new Keggin-type polyoxometallate-based bifunctional catalyst for trace detection and pH-universal photodegradation of phenol. Chinese Chemical Letters, 2024, 35(8): 109148-. doi: 10.1016/j.cclet.2023.109148

    10. [10]

      Baokang GengXiang ChuLi LiuLingling ZhangShuaishuai ZhangXiao WangShuyan SongHongjie Zhang . High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction. Chinese Chemical Letters, 2024, 35(7): 108924-. doi: 10.1016/j.cclet.2023.108924

    11. [11]

      You ZhouLi-Sheng WangShuang-Gui LeiBo-Cheng TangZhi-Cheng YuXing LiYan-Dong WuKai-Lu ZhengAn-Xin Wu . I2-DMSO mediated tetra-functionalization of enaminones for the construction of novel furo[2′,3′:4,5]pyrimido[1,2-b]indazole skeletons via in situ capture of ketenimine cations. Chinese Chemical Letters, 2025, 36(1): 109799-. doi: 10.1016/j.cclet.2024.109799

    12. [12]

      Yanqiong WangYaqi HouFengwei HuoXu Hou . Fe3+ ion quantification with reusable bioinspired nanopores. Chinese Chemical Letters, 2025, 36(2): 110428-. doi: 10.1016/j.cclet.2024.110428

    13. [13]

      Peng Wang Daijie Deng Suqin Wu Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2024.100199

    14. [14]

      Gang HuChun WangQinqin WangMingyuan ZhuLihua Kang . The controlled oxidation states of the H4PMo11VO40 catalyst induced by plasma for the selective oxidation of methacrolein. Chinese Chemical Letters, 2025, 36(2): 110298-. doi: 10.1016/j.cclet.2024.110298

    15. [15]

      Sikai Wu Xuefei Wang Huogen Yu . Hydroxyl-enriched hydrous tin dioxide-coated BiVO4 with boosted photocatalytic H2O2 production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100457-100457. doi: 10.1016/j.cjsc.2024.100457

    16. [16]

      Mengxiang ZhuTao DingYunzhang LiYuanjie PengRuiping LiuQuan ZouLeilei YangShenglei SunPin ZhouGuosheng ShiDongting Yue . Graphene controlled solid-state growth of oxygen vacancies riched V2O5 catalyst to highly activate Fenton-like reaction. Chinese Chemical Letters, 2024, 35(12): 109833-. doi: 10.1016/j.cclet.2024.109833

    17. [17]

      Haodong WangXiaoxu LaiChi ChenPei ShiHouzhao WanHao WangXingguang ChenDan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473

    18. [18]

      Mei PengWei-Min He . Photochemical synthesis and group transfer reactions of azoxy compounds. Chinese Chemical Letters, 2024, 35(8): 109899-. doi: 10.1016/j.cclet.2024.109899

    19. [19]

      Shehla KhalidMuhammad BilalNasir RasoolMuhammad Imran . Photochemical reactions as synthetic tool for pharmaceutical industries. Chinese Chemical Letters, 2024, 35(9): 109498-. doi: 10.1016/j.cclet.2024.109498

    20. [20]

      Shuo LiXinran LiuYongjie ZhengJun MaShijie YouHeshan Zheng . Effective peroxydisulfate activation by CQDs-MnFe2O4@ZIF-8 catalyst for complementary degradation of bisphenol A by free radicals and non-radical pathways. Chinese Chemical Letters, 2024, 35(5): 108971-. doi: 10.1016/j.cclet.2023.108971

Metrics
  • PDF Downloads(0)
  • Abstract views(615)
  • HTML views(23)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return