Citation: Hui Zhao, Wu-Bao Wang, Shinpei Nakagawa, Yue-Mei Jia, Xiang-Guo Hu, George W.J. Fleet, Francis X. Wilson, Robert J. Nash, Atsushi Kato, Chu-Yi Yu. Novel 2-aryl-3,4,5-trihydroxypiperidines: Synthesis and glycosidase inhibition[J]. Chinese Chemical Letters, ;2013, 24(12): 1059-1063. shu

Novel 2-aryl-3,4,5-trihydroxypiperidines: Synthesis and glycosidase inhibition

  • Corresponding author: Atsushi Kato,  Chu-Yi Yu, 
  • Received Date: 19 May 2013
    Available Online: 6 June 2013

    Fund Project:

  • Three pairs of novel 2-aryl-3,4,5-trihydroxypiperidines (6-8 and their enantiomers), the piperidine analogues of the pyrrolidine alkaloids radicamine A and radicamine B, were prepared from sixmembered cyclic nitrones through a concise two-step procedure, i.e., Grignard reagent addition and deprotection. These novel polyhydroxylated piperidine iminosugars were assayed against 10 types of enzymes. Only compound 8 exhibited weak inhibition (IC50 1080 μmol/L) against β-galactosidase from rat intestinal lactases.
  • 加载中
    1. [1]

      [1] For books see: (a) A.E. Stütz, Iminosugars as Glycosidase Inhibitors: Nojirimycin and Beyond, Wiley-VCH, Weinheim/New York, 1999;

    2. [2]

      (b) P. Compain, O.R. Martin, Iminosugars: From Synthesis to Therapeutic Applications, John Wiley & Sons, England, 2007; For reviews see:

    3. [3]

      (c) N. Asano, R.J. Nash, R.J. Molyneux, G.W.J. Fleet, Sugar-mimic glycosidase inhibitors: natural occurrence, biological activity and prospects for therapeutic application, Tetrahedron: Asymmetry 11 (2000) 1645-1680;

    4. [4]

      (d) A.A. Watson, G.W.J. Fleet, N. Asano, R.J. Molyneux, R.J. Nash, Polyhydroxylated alkaloids - natural occurrence and therapeutic applications, Phytochemistry 56 (2001) 265-295.

    5. [5]

      [2] (a) G. Horne, F.X. Wilson, J. Tinsley, D.H. Williams, R. Storer, Iminosugars past, present and future: medicines for tomorrow, Drug Discovery Today 16 (2011) 107-118;

    6. [6]

      (b) N. Asano, Glycosidase inhibitors: update and perspectives on practical use, Glycobiology 13 (2003) 93R-104R;

    7. [7]

      (c) X.S. Ye, F. Sun, M. Liu, et al., Synthetic iminosugar derivatives as new potential immunosuppressive agents, J. Med. Chem. 48 (2005) 3688-3691.

    8. [8]

      [3] (a) M. Shibano, D. Tsukamoto, G. Kusano, Polyhydroxylated alkaloids with lipophilic moieties as glycosidase inhibitors from higher plants, Heterocycles 57 (2002) 1539-1553;

    9. [9]

      (b) M. Shibano, D. Tsukamoto, A. Masuda, Y. Tanaka, G. Kusano, Two new pyrrolidine alkaloids, radicanmines A and B, as inhibitors of α-glucosidase from lobelia chinensis LOUR, Chem. Pharm. Bull. 49 (2001) 1362-1365;

    10. [10]

      (c) S. Ishida, M. Okasaka, F. Ramos, et al., Reply to: no effect of endogenous TRIM5α on HIV-1 production, Nat. Med. 62 (2008) 236-238.

    11. [11]

      [4] (a) C.L.J. Wang, J.C. Calabrese, Decarboxylative cyclization of allylic cyclic carbamates: applications to the total synthesis of (-)-codonopsine, J. Org. Chem. 56 (1991) 4341-4343;

    12. [12]

      (b) H. Yoda, T. Nakajima, K. Takabe, Total synthesis of natural (-)-codonopsinine employing stereoselective reduction of quaternary a-hydroxypyrrolidine, Tetrahedron Lett. 37 (1996) 5531-5534;

    13. [13]

      (c) D.F. Oliveira, E.A. Severino, C.R.D. Correia, Heck reaction of endocyclic enecarbamates with diazonium salts. Formal enantioselective syntheses of alkaloids (-)-codonopsine and (-)-codonopsinine, and the synthesis of a new C-aryl azasugar, Tetrahedron Lett. 40 (1999) 2083-2086;

    14. [14]

      (d) E.A. Severino, C.R.D. Correia, Heck arylation of endocyclic enecarbamates with diazonium salts. improvements and a concise enantioselective synthesis of (-)- codonopsinine, Opt. Lett. 2 (2000) 3039-3042;

    15. [15]

      (e) M. Haddad, M. Larcheveque, Diastereocontrolled synthesis of (-)-codonopsinine, Synlett (2003) 274-276;

    16. [16]

      (f) A. Goti, S. Cicchi, V. Mannucci, et al., Iterative organometallic addition to chiral hydroxylated cyclic nitrones: highly stereoselective syntheses of α,α'- and α,α substituted hydroxypyrrolidines, Opt. Lett. 5 (2003) 4235-4238;

    17. [17]

      (g) S. Chandrasekhar, V. Jagadeshwar, S.J. Prakash, Total synthesis of the alkaloid (-)-codonopsinine from L-xylose, Tetrahedron Lett. 46 (2005) 3127-3129;

    18. [18]

      (h) C. Ribes, E. Falomir, M. Carda, J.A. Marco, Short, stereoselective synthesis of the naturally occurring pyrrolidine radicamine B and a formal synthesis of nectrisine, J. Org. Chem. 73 (2008) 7779-7782;

    19. [19]

      (i) M.A. Chowdhury, H.U. Reissig, Syntheses of highly substituted furan and pyrrole derivatives via lithiated 3-aryl-1-methoxyallenes: application to the synthesis of codonopsinine, Synlett (2006) 2383-2386;

    20. [20]

      (j) S. Chandrasekhar, B. Saritha, V. Jagadeshwar, S.J. Prakash, Practical and highly stereoselective approaches to the total synthesis of (-)-codonopsinine, Tetrahedron: Asymmetry 17 (2006) 1380-1386;

    21. [21]

      (k) M.K. Gurjar, R.G. Borhade, V.G. Puranik, C.V. Ramana, Total synthesis of (-)- radicamine B, Tetrahedron Lett. 47 (2006) 6979-6981;

    22. [22]

      (l) C.Y. Yu, M.H. Huang, Radicamines A and B: synthesis and revision of the absolute configuration, Opt. Lett. 8 (2006) 3021-3024;

    23. [23]

      (m) X. Zhou, W.J. Liu, J.L. Ye, P.Q. Huang, A versatile approach to pyrrolidine azasugars and homoazasugars based on a highly diastereoselective reductive benzyloxymethylation of protected tartarimide, Tetrahedron 63 (2007) 6346-6357;

    24. [24]

      (n) J.S. Reddy, B.V. Rao, A short, efficient, and stereoselective total synthesis of a pyrrolidine alkaloid: (-)-codonopsinine, J. Org. Chem. 72 (2007) 2224-2227;

    25. [25]

      (o) P. Merino, I. Delso, T. Tejero, F. Cardona, A. Goti, Nucleophilic additions and redox reactions of polyhydroxypyrroline oxides on the way to pyrrolidine alkaloids: total synthesis of Radicamine B, Synlett (2007) 2651-2654.

    26. [26]

      [5] (a) I. Robina, A.J. Moreno-Vargas, J.G. Fernandez-Bolanos, et al., New leads for selective inhibitors of α-L-fucosidases. Synthesis and glycosidase inhibitory activities of [(2R,3S,4R)-3,4-dihydroxypyrrolidin-2-yl]furan derivatives, Bioorg. Med. Chem. Lett. 11 (2001) 2555-2559;

    27. [27]

      (b) A.J. Moreno-Vargas, R. Demange, J. Fuentes, I. Robina, P. Vogel, Synthesis of [(2S 3S,4R)-3,4-dihydroxypyrrolidin-2-yl]-5-methylfuran-4-carboxylic acid derivatives: new leads as selective β-galactosidase inhibitors, Bioorg. Med. Chem. Lett. 12 (2002) 2335-2341;

    28. [28]

      (c) E.A. Severino, E.R. Costenaro, A.L.L. Garcia, C.R.D. Correia, Probing the stereoselectivity of the Heck arylation of endocyclic enecarbamates with diazonium salts. Concise syntheses of (2S,5R)-phenylproline methyl ester and Schramm's Cazanucleoside, Org. Lett. 5 (2003) 305-308;

    29. [29]

      (d) A.J. Moreno-Vargas, I. Robina, R. Demange, P. Vogel, Synthesis and glycosidase inhibitory activities of 5-(10 40-dideoxy-10,40-imino-d-erythrosyl)-2-methyl-3- furoic acid (=5-[(3S,4R)-3,4-dihydroxypyrrolidin-2-yl]-2-methylfuran-3-carboxylic acid) derivatives: new leads as selective α-L-fucosidase and β-falactosidase inhibitors, Helv. Chim. Acta 86 (2003) 1894-1913;

    30. [30]

      (e) V.L. Schramm, P.C. Tyler, Imino-sugar-based nucleosides, Curr. Top. Med. Chem. 3 (2003) 525-540;

    31. [31]

      (f) A.J. Moreno-Vargas, A.T. Carmona, F. Mora, P. Vogel, I. Robina, Stereoselective synthesis of (2S 3S,4R,5S)-5-methylpyrrolidine-3,4-diol derivatives that are highly selective a-L-fucosidase inhibitors, Chem. Commun. (2005) 4949-4951;

    32. [32]

      (g) E.L. Tsou, S.Y. Chen, M.H. Yang, et al., Synthesis and biological evaluation of a 2-aryl polyhydroxylated pyrrolidine alkaloid-based library, Bioorg. Med. Chem. 16 (2008) 10198-10204;

    33. [33]

      (h) E. Moreno-Clavijo, A.T. Carmona, Y. Vera-Ayoso, et al., Synthesis of novel pyrrolidine 3,4-diol derivatives as inhibitors of α-L-fucosidases, Org. Biomol. Chem. 7 (2009) 1192-1202.

    34. [34]

      [6] (a) S. Stecko, M. Jurczak, Z. Urbanczyk-Lipkowska, J. Solecka, M. Chmielewski, Synthesis of pyrrolizidine alkaloids via 1,3-dipolar cycloaddition involving cyclic nitrones and unsaturated lactones, Carbohydr. Res. 343 (2008) 2215-2220;

    35. [35]

      (b) S. Stecko, A. Mames, B. Furman, M. Chmielewski, Asymmetric kinugasa reaction of cyclic nitrones and nonracemic acetylenes, J. Org. Chem. 74 (2009) 3094-3100.

    36. [36]

      [7] T. Ueda, M. Inada, I. Okamoto, N. Morita, O. Tamura, Synthesis of maremycins A and D1 via cycloaddition of a nitrone with (E)-3-ethylidene-1-methylindolin-2- one, Org. Lett. 10 (2008) 2043-2046.

    37. [37]

      [8] (a) M. Marradi, M. Corsi, S. Cicchi, et al., N-Glycosylhydroxylamines as masked polyhydroxylated chiral nitrones in cycloaddition reactions: an access to pyrrolizidines, Heterocycles 79 (2009) 883-896;

    38. [38]

      (b) S. Stecko, K. Pasniczek, M. Jurczak, J. Solecka, M. Chmielewski, Synthesis of the potential mannosidase inhibitor via 1,3-dipolar cycloaddition involving cyclic nitrone and unsaturated chiral g-lactone, Pol. J. Chem. 83 (2009) 237-243;

    39. [39]

      (c) A. Badoiu, Y. Brinkmann, F. Viton, E.P. Kundig, Asymmetric Lewis acid-catalyzed 1,3-dipolar cycloadditions, Pure Appl. Chem. 80 (2008) 1013-1018;

    40. [40]

      (d) M.L. Kuznetsov, A.A. Nazarov, L.V. Kozlova, V.Y. Kukushkin, Theoretical study of chemo-, regio-, and stereoselectivity in 1,3-dipolar cycloadditions of nitrones H. Zhao et al. Chinese Chemical Letters 1062 24 (2013) 1059-1063 and nitrile oxides to free and Pt-bound bifunctional dipolarophiles, J. Org. Chem. 72 (2007) 4475-4485;

    41. [41]

      (e) M.L. Kuznetsov, V.Y. Kukushkin, Theoretical study of reactant activation in 1,3-dipolar cycloadditions of cyclic nitrones to free and Pt-bound nitriles, J. Org. Chem. 71 (2006) 582-592.

    42. [42]

      [9] (a) P. Merino, S. Franco, F.L. Merchan, T. Tejero, Nucleophilic additions to chiral nitrones: new approaches to nitrogenated compounds, Synlett (2000) 442-444;

    43. [43]

      (b) C. Berini, F. Minassian, N. Pelloux-Leon, et al., Efficient stereoselective nucleophilic addition of pyrroles to chiral nitrones, Org. Biomol. Chem. 6 (2008) 2574-2586;

    44. [44]

      (c) S.H. Yang, V. Caprio, A concise and flexible synthesis of the core structure of pinnaic acid, Synlett (2007) 1219-1222;

    45. [45]

      (d) J.Murga, R. Portoles, E. Falomir, M. Carda, J.A.Marco, Stereoselective addition of organometallic reagents to a chiral acyclic nitrone derived from L-erythrulose, Tetrahedron: Asymmetry 16 (2005) 1807-1816;

    46. [46]

      (e) P. Merino, J. Revuelta, T. Tejero, S. Ciechi, A. Goti, Fully stereoselective nucleophilic addition to a novel chiral pyrroline N-oxide: total syntheses of (2S 3R)-3- hydroxy-3-methylproline and its (2R)-epimer, Eur. J. Org. Chem. (2004) 776-782.

    47. [47]

      [10] P. Merino, I. Delso, T. Tejero, et al., Nucleophilic additions to cyclic nitrones en route to iminocyclitols - total syntheses of DMDP, 6-deoxy-DMDP, DAB-1 CYB-3, nectrisine, and radicamine B, Eur. J. Org. Chem. (2008) 2929-2947.

    48. [48]

      [11] (a) J. Rehak, L. Fisera, N. Pronayova, Samarium diiodide-induced reductive coupling of chiral nitrones prepared from D-isoascorbic acid with methyl acrylate, Arkivoc (2009) 146-157;

    49. [49]

      (b) S.F. Wu, X. Zheng, Y.P. Ruan, P.Q. Huang, A new approach to 3-hydroxyprolinol derivatives by samarium diiodide-mediated reductive coupling of chiral nitrone with carbonyl compounds, Org. Biomol. Chem. 7 (2009) 2967-2975;

    50. [50]

      (c) S. Desvergnes, S. Py, Y. Vallée, Total synthesis of (+)-hyacinthacine A2based on SmI2-induced nitrone umpolung, J. Org. Chem. 70 (2005) 1459-1462;

    51. [51]

      (d) S. Desvergnes, V. Desvergnes, O.R. Martin, et al., Stereoselective synthesis of β-1-C-substituted 1 4-dideoxy-1,4-imino-D-galactitols and evaluation as UDPgalactopyranose mutase inhibitors, Bioorg. Med. Chem. 15 (2007) 6443-6449;

    52. [52]

      (e) G. Masson, C. Philouze, S. Py, cis-Stereoselective SmI2-promoted reductive coupling of keto-nitrones: first synthesis of 1-epitrehazolamine, Org. Biomol. Chem. 3 (2005) 2067-2069;

    53. [53]

      (f) M. Chavarot, M. Rivard, F. Rose-Munch, E. Rose, S. Py, First asymmetric SmI2- induced cross-coupling of Cr(CO)3 aromatic nitrone complexes with carbonyl compounds, Chem. Commun. (2004) 2330-2331;

    54. [54]

      (g) G. Masson, W. Zeghida, P. Cividino, S. Py, Y. Vallée, A concise formal synthesis of (S)-vigabatrin based on nitrone umpolung, Synlett (2003) 1527-1529.

    55. [55]

      [12] X.G. Hu, Y.M. Jia, J.F. Xiang, C.Y. Yu, Exploratory studies en route to 5-alkylhyacinthacines: synthesis of 5-epi-(-)-hyacinthacine A3 and (-)-hyacinthacine A3, Synlett (2010) 982-986.

    56. [56]

      [13] W.B. Wang, M.H. Huang, Y.X. Li, et al., A practical synthesis of sugar-derived cyclic nitrones: powerful synthons for the synthesis of iminosugars, Synlett (2010) 488-492.

    57. [57]

      [14] (a) For recent work on polyhydroxylated cyclic nitrones, see: C.W. Holzapfel, R. Crous, Synthesis and reactions of chiral cyclic nitrones derived from D-ribose, Heterocycles, 48 (1998) 1337-1342;

    58. [58]

      (b) F.J. Duff, V. Vivien, R.H. Wightman, Synthesis of aza-C-disaccharides using cycloaddition reactions of a functionalized cyclic nitrone, Chem. Commun. (2000) 2127-2128;

    59. [59]

      (c) O. Tamura, A. Toyao, H. Ishibashi, TBAT-mediated nitrone formation of ω mesyloxy- O-tert-butyldiphenylsilyl-oximes: facile synthesis of cyclic nitrones from hemiacetals, Synlett (2002) 1344-1346;

    60. [60]

      (d) A.T. Carmona, R.H. Wightman, I. Robina, P. Vogel, Synthesis and glycosidase inhibitory activity of 7-deoxycasuarine, Helv. Chim. Acta 86 (2003) 3066-3073;

    61. [61]

      (e) S. Cicchi, M. Marradi, P. Vogel, A. Goti, One-pot synthesis of cyclic nitrones and their conversion to pyrrolizidines: 7a-epi-crotanecine inhibits a-mannosidases, J. Org. Chem. 71 (2006) 1614-1619;

    62. [62]

      (f) S.P. Desvergnes, Y. Vallée, S. Py, Novel polyhydroxylated cyclic nitrones and Nhydroxypyrrolidines through BCl3-mediated deprotection, Org. Lett. 10 (2008) 2967-2970;

    63. [63]

      (g) K.P. Kaliappan, P. Das, S.T. Chavan, S.G. Sabharwal, A versatile access to calystegine analogues as potential glycosidases inhibitors, J. Org. Chem. 74 (2009) 6266-6274;

    64. [64]

      (h) E. Racine, C. Bello, S. Gerber-Lemaire, P. Vogel, S. Py, A short and convenient synthesis of 1-deoxymannojirimycin and N-oxy analogues from D-fructose, J. Org. Chem. 74 (2009) 1766-1769;

    65. [65]

      (i) J.A. Tamayo, F. Franco, D. Lo Re, F. Sánchez-Cantalejo, Synthesis of pentahydroxylated pyrrolizidines and indolizidines, J. Org. Chem. 74 (2009) 5679-5682;

    66. [66]

      (j) E.L. Tsou, Y.T. Yeh, P.H. Liang, W.C. Cheng, A convenient approach toward the synthesis of enantiopure isomers of DMDP and ADMDP, Tetrahedron 65 (2009) 93-100;

    67. [67]

      (k) F. Cardona, C. Parmeggiani, E. Faggi, et al., Total synthesis of casuarine and its 6-O-α-glucoside: complementary inhibition towards glycoside hydrolases of the GH31 and GH37 families, Chem. Eur. J. 15 (2009) 1627-1636;

    68. [68]

      (l) A. Brandi, F. Cardona, S. Cicchi, F.M. Cordero, A. Goti, Stereocontrolled cyclic nitrone cycloaddition strategy for the synthesis of pyrrolizidine and indolizidine alkaloids, Chem. Eur. J. 15 (2009) 7808-7821.

  • 加载中
    1. [1]

      Shiqi XuZi YeShuang ShangFengge WangHuan ZhangLianguo ChenHao LinChen ChenFang HuaChong-Jing Zhang . Pairs of thiol-substituted 1,2,4-triazole-based isomeric covalent inhibitors with tunable reactivity and selectivity. Chinese Chemical Letters, 2024, 35(7): 109034-. doi: 10.1016/j.cclet.2023.109034

    2. [2]

      Yulong ShiFenbei ChenMengyuan WuXin ZhangRunze MengKun WangYan WangYuheng MeiQionglu DuanYinghong LiRongmei GaoYuhuan LiHongbin DengJiandong JiangYanxiang WangDanqing Song . Chemical construction and anti-HCoV-OC43 evaluation of novel 10,12-disubstituted aloperine derivatives as dual cofactor inhibitors of TMPRSS2 and SR-B1. Chinese Chemical Letters, 2024, 35(5): 108792-. doi: 10.1016/j.cclet.2023.108792

    3. [3]

      Mianling YangMeehyein KimPeng Zhan . Modular miniaturized synthesis and in situ biological evaluation facilitate rapid discovery of potent MraY inhibitors as antibacterial agents. Chinese Chemical Letters, 2025, 36(2): 110455-. doi: 10.1016/j.cclet.2024.110455

    4. [4]

      Jian SongShenghui WangQiuge LiuXiao WangShuo YuanHongmin LiuSaiyang ZhangN-Benzyl arylamide derivatives as novel and potent tubulin polymerization inhibitors against gastric cancers: Design, structure–activity relationships and biological evaluations. Chinese Chemical Letters, 2025, 36(2): 109678-. doi: 10.1016/j.cclet.2024.109678

    5. [5]

      Tian-Yu GaoXiao-Yan MoShu-Rong ZhangYuan-Xu JiangShu-Ping LuoJian-Heng YeDa-Gang Yu . Visible-light photoredox-catalyzed carboxylation of aryl epoxides with CO2. Chinese Chemical Letters, 2024, 35(7): 109364-. doi: 10.1016/j.cclet.2023.109364

    6. [6]

      Wei SunAnjing LiaoLi LeiXu TangYa WangJian Wu . Research progress on piperidine-containing compounds as agrochemicals. Chinese Chemical Letters, 2025, 36(1): 109855-. doi: 10.1016/j.cclet.2024.109855

    7. [7]

      Lei ShenYang ZhangLinlin ZhangChuanwang LiuZhixian MaKangjiang LiangChengfeng Xia . Phenylhydrazone anions excitation for the photochemical carbonylation of aryl iodides with aldehydes. Chinese Chemical Letters, 2024, 35(4): 108742-. doi: 10.1016/j.cclet.2023.108742

    8. [8]

      Xiao-Bo LiuRen-Ming LiuXiao-Di BaoHua-Jian XuQi ZhangYu-Feng Liang . Nickel-catalyzed reductive formylation of aryl halides via formyl radical. Chinese Chemical Letters, 2024, 35(12): 109783-. doi: 10.1016/j.cclet.2024.109783

    9. [9]

      Junxin LiChao ChenYuzhen DongJian LvJun-Mei PengYuan-Ye JiangDaoshan Yang . Ligand-promoted reductive coupling between aryl iodides and cyclic sulfonium salts by nickel catalysis. Chinese Chemical Letters, 2024, 35(11): 109732-. doi: 10.1016/j.cclet.2024.109732

    10. [10]

      Jiajun LuZhehui LiaoTongxiang CaoShifa Zhu . Synergistic Brønsted/Lewis acid catalyzed atroposelective synthesis of aryl-β-naphthol. Chinese Chemical Letters, 2025, 36(1): 109842-. doi: 10.1016/j.cclet.2024.109842

    11. [11]

      Pengfei ZhangQingxue MaZhiwei JiangXiaohua XuZhong Jin . Transition-metal-catalyzed remote meta-C—H alkylation and alkynylation of aryl sulfonic acids enabled by an indolyl template. Chinese Chemical Letters, 2024, 35(8): 109361-. doi: 10.1016/j.cclet.2023.109361

    12. [12]

      Jianhui YinWenjing HuangChangyong GuoChao LiuFei GaoHonggang Hu . Tryptophan-specific peptide modification through metal-free photoinduced N-H alkylation employing N-aryl glycines. Chinese Chemical Letters, 2024, 35(6): 109244-. doi: 10.1016/j.cclet.2023.109244

    13. [13]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    14. [14]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    15. [15]

      Shengwen GuanZhaotong WeiNingxu HanYude WeiBin XuMing WangJunjuan Shi . Construction of metallo-complexes with 2,2′:6′,2″-terpyridine substituted triphenylamine in different modified positions and their photophysical properties. Chinese Chemical Letters, 2024, 35(7): 109348-. doi: 10.1016/j.cclet.2023.109348

    16. [16]

      Maomao Liu Guizeng Liang Ningce Zhang Tao Li Lipeng Diao Ping Lu Xiaoliang Zhao Daohao Li Dongjiang Yang . Electron-rich Ni2+ in Ni3S2 boosting electrocatalytic CO2 reduction to formate and syngas. Chinese Journal of Structural Chemistry, 2024, 43(8): 100359-100359. doi: 10.1016/j.cjsc.2024.100359

    17. [17]

      Yongheng Ren Yang Chen Hongwei Chen Lu Zhang Jiangfeng Yang Qi Shi Lin-Bing Sun Jinping Li Libo Li . Electrostatically driven kinetic Inverse CO2/C2H2 separation in LTA-type zeolites. Chinese Journal of Structural Chemistry, 2024, 43(10): 100394-100394. doi: 10.1016/j.cjsc.2024.100394

    18. [18]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    19. [19]

      Liyong DingZhenhua PanQian Wang . 2D photocatalysts for hydrogen peroxide synthesis. Chinese Chemical Letters, 2024, 35(12): 110125-. doi: 10.1016/j.cclet.2024.110125

    20. [20]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

Metrics
  • PDF Downloads(0)
  • Abstract views(611)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return