Citation: Yu Zhang, Yan-Jun Zhang, Xiao-Dong Xia, Xiao-Qi Hou, Cheng-Ting Feng, Jian-Xiu Wang, Liu Deng. A quantitative colorimetric assay of H2O2 and glucose using silver nanoparticles induced by H2O2 and UV[J]. Chinese Chemical Letters, ;2013, 24(12): 1053-1058. shu

A quantitative colorimetric assay of H2O2 and glucose using silver nanoparticles induced by H2O2 and UV

  • Corresponding author: Jian-Xiu Wang,  Liu Deng, 
  • Received Date: 7 April 2013
    Available Online: 1 July 2013

    Fund Project: This work was supported by the National Natural Science Foundation of China (No. 21105126) (No. 21105126)

  • A simple spectrophotometric assay of H2O2 and glucose using Ag nanoparticles has been carried out. Relying on the synergistic effect of H2O2 reduction and ultraviolet (UV) irradiation, Ag nanoparticles with enhanced absorption signals were synthesized. H2O2 served as a reducing agent in the Ag nanoparticles formation in which Ag+ was reduced to Ag0 by O2- generated via the decomposition of H2O2 in alkaline media. On the other hand, photoreduction of Ag+ to Ag0 under UV irradiations also contributed to the nanoparticles formation. The synthesized nanoparticles were characterized by TEM, XPS, and XRD. The proposed method could determine H2O2 with concentrations ranging from 5.0×10-7 to 6.0×10-5 mol/ L. The detection limit was estimated to be 2.0×10-7 mol/L. Since the conversion of glucose to gluconic acid catalyzed by glucose oxidase was companied with the formation of H2O2, the sensing protocol has been successfully utilized for the determination of glucose in human blood samples. The results were in good agreement with those determined by a local hospital. This colorimetric sensor thus holds great promises in clinical applications.
  • 加载中
    1. [1]

      [1] S.I. Stupp, Introduction: functional nanostructures, Chem. Rev. 105 (2005) 1023- 1024.

    2. [2]

      [2] T.G. Drummond, M.G. Hill, J.K. Barton, Electrochemical DNA sensors, Nat. Biotechnol. 21 (2003) 1192-1199.

    3. [3]

      [3] N.L. Rosi, C.A. Mirkin, Nanostructures in biodiagnostics, Chem. Rev. 105 (2005) 1547-1562.

    4. [4]

      [4] E. Katz, I. Willner, Integrated nanoparticle-biomolecule hybrid systems: synthesis, properties, and applications, Angew. Chem. Int. Ed. 43 (2004) 6042-6108.

    5. [5]

      [5] M.C. Daniel, D. Astruc, Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology, Chem. Rev. 104 (2004) 293-346.

    6. [6]

      [6] H. Wei, C. Chen, B. Han, E. Wang, Enzyme colorimetric assay using unmodified silver nanoparticles, Anal. Chem. 80 (2008) 7051-7055.

    7. [7]

      [7] X. Xie, W. Xu, T. Li, X. Liu, Gold nanoparticles: colorimetric detection of HIV-1 ribonuclease H activity by gold nanoparticles, Small 7 (2011) 1393-1396.

    8. [8]

      [8] C. Yang, Y. Wang, J.L. Marty, X. Yang, Aptamer-based colorimetric biosensing of ochratoxin A using unmodified gold nanoparticles indicator, Biosens. Bioelectron. 26 (2011) 2724-2727.

    9. [9]

      [9] J.H. Kim, S.H. Han, B.H. Chung, Improving Pb2+ detection using DNAzyme-based fluorescence sensors by pairing fluorescence donors with gold nanoparticles, Biosens. Bioelectron. 26 (2011) 2125-2129.

    10. [10]

      [10] Y. Cheng, T. Stakenborg, P. Van Dorpe, et al., Fluorescence near gold nanoparticles for DNA sensing, Anal. Chem. 83 (2011) 1307-1314.

    11. [11]

      [11] Y. Xue, H. Zhao, Z. Wu, et al., The comparison of different gold nanoparticles/graphene nanosheets hybrid nanocomposites in electrochemical performance and the construction of a sensitive uric acid electrochemical sensor with novel hybrid nanocomposites, Biosens. Bioelectron. 29 (2011) 102-108.

    12. [12]

      [12] M. Brust, G.J. Gordillo, Electrocatalytic hydrogen redox chemistry on gold nanoparticles, J. Am. Chem. Soc. 134 (2012) 3318-3321.

    13. [13]

      [13] C.C. Chang, S. Lin, S.C. Wei, C.Y. Chen, C.W. Lin, An amplified surface plasmon resonance ‘‘turn-on'' sensor for mercury ion using gold nanoparticles, Biosens. Bioelectron. 30 (2011) 235-240.

    14. [14]

      [14] M. Frasconi, C. Tortolini, F. Botre, F. Mazzei, Multifunctional Au nanoparticle dendrimer-based surface plasmon resonance biosensor and its application for improved insulin detection, Anal. Chem. 82 (2010) 7335-7342.

    15. [15]

      [15] P. Pienpinijtham, X.X. Han, S. Ekgasit, Y. Ozaki, Highly sensitive and selective determination of iodide and thiocyanate concentrations using surface-enhanced Raman scattering of starch-reduced gold nanoparticles, Anal. Chem. 83 (2011) 3655-3662.

    16. [16]

      [16] E. Tan, P. Yin, X. Lang, et al., Functionalized gold nanoparticles as nanosensor for sensitive and selective detection of silver ions and silver nanoparticles by surfaceenhanced Raman scattering, Analyst 137 (2012) 3925-3928.

    17. [17]

      [17] X. Guo, C.S. Lin, S.H. Chen, R. Ye, V.C.H. Wu, A piezoelectric immunosensor for specific capture and enrichment of viable pathogens by quartz crystal microbalance sensor, followed by detection with antibody-functionalized gold nanoparticles, Biosens. Bioelectron. 38 (2012) 177-183.

    18. [18]

      [18] Z.M. Dong, G.C. Zhao, Quartz crystal microbalance aptasensor for sensitive detection of mercury (II) based on signal amplification with gold nanoparticles, Sensors 12 (2012) 7080-7094.

    19. [19]

      [19] K. Saha, S.S. Agasti, C. Kim, X. Li, V.M. Rotello, Gold nanoparticles in chemical and biological sensing, Chem. Rev. 112 (2012) 2739-2779.

    20. [20]

      [20] M. Zayats, R. Baron, I. Popov, I. Willner, Biocatalytic growth of Au nanoparticles: from mechanistic aspects to biosensors design, Nano Lett. 5 (2005) 21-25.

    21. [21]

      [21] R.M. Crooks, M. Zhao, L. Sun, V. Chechik, L.K. Yeung, Dendrimer-encapsulated metal nanoparticles: synthesis, characterization, and applications to catalysis, Acc. Chem. Res. 34 (2001) 181-190.

    22. [22]

      [22] F. Xia, X. Zuo, R. Yang, et al., Colorimetric detection of DNA, small molecules, proteins, and ions using unmodified gold nanoparticles and conjugated polyelectrolytes, Proc. Natl. Acad. Sci. U.S.A. 107 (2010) 10837-10841.

    23. [23]

      [23] N. Erathodiyil, J.Y. Ying, Functionalization of inorganic nanoparticles for bioimaging applications, Acc. Chem. Res. 44 (2011) 925-935.

    24. [24]

      [24] J.S. Lee, A.K.R. Lytton-Jean, S.J. Hurst, C.A. Mirkin, Silver nanoparticle-oligonucleotide conjugates based on DNA with triple cyclic disulfide moieties, Nano Lett. 7 (2007) 2112-2115.

    25. [25]

      [25] L. Tang, X. Lei, G. Zeng, et al., Optical detection ofNADHbased on biocatalytic growth of Au-Ag core-shell nanoparticles, Spectrochim. Acta A 99 (2012) 390-393.

    26. [26]

      [26] M. Ozyurek, N. Gungor, S. Baki, K. Guclu, R. Apak, Development of a silver nanoparticle-based method for the antioxidant capacity measurement of polyphenols, Anal. Chem. 84 (2012) 8052-8059.

    27. [27]

      [27] X. Sun, S. Dong, E. Wang, One-step preparation and characterization of poly (propyleneimine) dendrimer-protected silver nanoclusters, Macromolecules 37 (2004) 7105-7108.

    28. [28]

      [28] L. Li, X. Cao, F. Yu, Z. Yao, Y. Xie, G1 dendrimers-mediated evolution of silver nanostructures from nanoparticles to solid spheres, J. Colloid Interface Sci. 261 (2003) 366-371.

    29. [29]

      [29] S. Tan, M. Erol, A. Attygalle, H. Du, S. Sukhishvili, Synthesis of positively charged silver nanoparticles via photoreduction of AgNO3 in branched polyethyleneimine/ HEPES solutions, Langmuir 23 (2007) 9836-9843.

    30. [30]

      [30] A.M. Jones, S. Garg, D. He, A.N. Pham, T.D. Waite, Superoxide-mediated formation and charging of silver nanoparticles, Environ. Sci. Technol. 45 (2011) 1428-1434.

    31. [31]

      [31] D. He, A.M. Jones, S. Garg, A.N. Pham, T.D. Waite, Silver nanoparticle-reactive oxygen species interactions: application of a charging-discharging model, J. Phys. Chem. C 115 (2011) 5461-5468.

    32. [32]

      [32] L. Shang, H.J. Chen, L. Deng, S.J. Dong, Enhanced resonance light scattering based on biocatalytic growth of gold nanoparticles for biosensors design, Biosens. Bioelectron. 23 (2008) 1180-1184.

    33. [33]

      [33] N. Zhou, J. Wang, T. Chen, Z. Yu, G. Li, Enlargement of gold nanoparticles on the surface of a self-assembled monolayer modified electrode: a mode in biosensor design, Anal. Chem. 78 (2006) 5227-5230.

  • 加载中
    1. [1]

      Erzhuo ChengYunyi LiWei YuanWei GongYanjun CaiYuan GuYong JiangYu ChenJingxi ZhangGuangquan MoBin Yang . Galvanostatic method assembled ZIFs nanostructure as novel nanozyme for the glucose oxidation and biosensing. Chinese Chemical Letters, 2024, 35(9): 109386-. doi: 10.1016/j.cclet.2023.109386

    2. [2]

      Gengchen GuoTianyu ZhaoRuichang SunMingzhe SongHongyu LiuSen WangJingwen LiJingbin Zeng . Au-Fe3O4 dumbbell-like nanoparticles based lateral flow immunoassay for colorimetric and photothermal dual-mode detection of SARS-CoV-2 spike protein. Chinese Chemical Letters, 2024, 35(6): 109198-. doi: 10.1016/j.cclet.2023.109198

    3. [3]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    4. [4]

      Xin LiWanting FuRuiqing GuanYue YuanQinmei ZhongGang YaoSheng-Tao YangLiandong JingSong Bai . Nucleophiles promotes the decomposition of electrophilic functional groups of tetracycline in ZVI/H2O2 system: Efficiency and mechanism. Chinese Chemical Letters, 2024, 35(10): 109625-. doi: 10.1016/j.cclet.2024.109625

    5. [5]

      Yunkang TongHaiqiao HuangHaolan LiMingle LiWen SunJianjun DuJiangli FanLei WangBin LiuXiaoqiang ChenXiaojun Peng . Cooperative bond scission by HRP/H2O2 for targeted prodrug activation. Chinese Chemical Letters, 2024, 35(12): 109663-. doi: 10.1016/j.cclet.2024.109663

    6. [6]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    7. [7]

      Jing Wang Zhongliao Wang Jinfeng Zhang Kai Dai . Single-layer crystalline triazine-based organic framework photocatalysts with different linking groups for H2O2 production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100202-100202. doi: 10.1016/j.cjsc.2023.100202

    8. [8]

      Zhenyu HuZhenchun YangShiqi ZengKun WangLina LiChun HuYubao Zhao . Cationic surface polarization centers on ionic carbon nitride for efficient solar-driven H2O2 production and pollutant abatement. Chinese Chemical Letters, 2024, 35(10): 109526-. doi: 10.1016/j.cclet.2024.109526

    9. [9]

      Hao LvZhi LiPeng YinPing WanMingshan Zhu . Recent progress on non-metallic carbon nitride for the photosynthesis of H2O2: Mechanism, modification and in-situ applications. Chinese Chemical Letters, 2025, 36(1): 110457-. doi: 10.1016/j.cclet.2024.110457

    10. [10]

      Sikai Wu Xuefei Wang Huogen Yu . Hydroxyl-enriched hydrous tin dioxide-coated BiVO4 with boosted photocatalytic H2O2 production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100457-100457. doi: 10.1016/j.cjsc.2024.100457

    11. [11]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    12. [12]

      Guorong LiYijing WuChao ZhongYixin YangZian Lin . Predesigned covalent organic framework with sulfur coordination: Anchoring Au nanoparticles for sensitive colorimetric detection of Hg(Ⅱ). Chinese Chemical Letters, 2024, 35(5): 108904-. doi: 10.1016/j.cclet.2023.108904

    13. [13]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    14. [14]

      Zhenchun YangBixiao GuoZhenyu HuKun WangJiahao CuiLina LiChun HuYubao Zhao . Molecular engineering towards dual surface local polarization sites on poly(heptazine imide) framework for boosting H2O2 photo-production. Chinese Chemical Letters, 2024, 35(8): 109251-. doi: 10.1016/j.cclet.2023.109251

    15. [15]

      Xiaodan WangYingnan LiuZhibin LiuZhongjian LiTao ZhangYi ChengLecheng LeiBin YangYang Hou . Highly efficient electrosynthesis of H2O2 in acidic electrolyte on metal-free heteroatoms co-doped carbon nanosheets and simultaneously promoting Fenton process. Chinese Chemical Letters, 2024, 35(7): 108926-. doi: 10.1016/j.cclet.2023.108926

    16. [16]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    17. [17]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    18. [18]

      Hualin JiangWenxi YeHuitao ZhenXubiao LuoVyacheslav FominskiLong YePinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984

    19. [19]

      Wenya Jiang Jianyu Wei Kuan-Guan Liu . Atomically precise superatomic silver nanoclusters stabilized by O-donor ligands. Chinese Journal of Structural Chemistry, 2024, 43(9): 100371-100371. doi: 10.1016/j.cjsc.2024.100371

    20. [20]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

Metrics
  • PDF Downloads(0)
  • Abstract views(689)
  • HTML views(22)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return