Citation:
Kondapalli Venkata Gowri Chandra Sekhar, Thripuraribhatla Venkata Naga Varuna Tara Sasank, Hunsur Nagendra Nagesh, Narva Suresh, Kalaga Mahalakshmi Naidu, Amaroju Suresh. Synthesis of 3,5-diarylisoxazoles under solvent-free conditions using iodobenzene diacetate[J]. Chinese Chemical Letters,
;2013, 24(12): 1045-1048.
-
A simple and efficient method has been developed for conversion of chalcone oximes to 3,5-diaryl isoxazoles in excellent yields under solvent-free conditions. The synthesized compounds were characterized by infrared spectroscopy, 1H NMR, 13C NMR and HRMS.
-
Keywords:
- Isoxazoles,
- Chalcones,
- Solid-state synthesis,
- Iodobenzene diacetate
-
-
-
[1]
[1] V.A. Makarov, O.B. Riabova, V.G. Granik, P. Wutzler, M. Schmidtke, Novel [(biphenyloxy) propyl]isoxazole derivatives for inhibition of human rhinovirus 2 and coxsackievirus B3 replication, J. Antimicrob. Chemother. 5 (2005) 483-488.
-
[2]
[2] A. Padmaja, T. Payani, G. Dinneswara Reddy, V. Padmavathi, Synthesis, antimicrobial and antioxidant activities of substituted pyrazoles, isoxazoles, pyrimidine and thioxopyrimidine derivatives, Eur. J. Med. Chem. 44 (2009) 4557-4566.
-
[3]
[3] G. Amgad, P.N. Habeeb, R. Praveen, E.E. Knaus, Design and synthesis of 4,5- diphenyl-4-isoxazolines: novel inhibitors of cyclooxygenase-2 with analgesic and antiinflammatory activity, J. Med. Chem. 44 (2001) 2921-2927.
-
[4]
[4] S. Balalaie, A. Sharifi, B. Ahangarian, Solid phase synthesis of isoxazole and pyrazole derivatives under microwave irradiation, Indian J. Heterocycl. Chem. 10 (2000) 149-150.
-
[5]
[5] A. Kumar, R.A. Maurya, S. Sharma, et al., Design and synthesis of 3,5-diarylisoxazole derivatives as novel class of anti-hyperglycemic and lipid lowering agents, Bioorg. Med. Chem. 17 (2009) 5285-5292.
-
[6]
[6] P. Diana, A. Carbone, P. Barraja, et al., Synthesis and antitumor activity of 2,5- bis(3'-indolyl)-furans and 3,5-bis(3'-indolyl)-isoxazoles, nortopsentin analogues, Bioorg. Med. Chem. 18 (2010) 4524-4529.
-
[7]
[7] (a) E. Schaumann, in: E. Schaumann (Ed.), Science of Synthesis, Houben-Weyl methods of molecular transformations, Georg Thieme Verlag, Stuttgart, 2001, pp. 229-288;
-
[8]
(b) T.M.V.D. Pinho eMelo, Recent advances on the synthesis and reactivity of isoxazoles, Curr. Org. Chem. 9 (2005) 925-958.
-
[9]
[8] V. Jager, P.A. Colinas, in: A. Padwa, W.H. Pearson (Eds.), Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry Toward Heterocycles and Natural Products, Wiley, Hoboken, 2002, pp. 361-472.
-
[10]
[9] (a) F. Himo, T. Lovell, R. Hilgraf, et al., Copper (I)-catalyzed synthesis of azoles. DFT study predicts unprecedented reactivity and intermediates, J. Am. Chem. Soc. 127 (2005) 210-216;
-
[11]
(b) T.V. Hansen, P. Wu, V.V. Fokin, One-pot copper(I)-catalyzed synthesis of 3,5- disubstituted isoxazoles, J. Org. Chem. 70 (2005) 7761-7764;
-
[12]
(c) S. Grecian, V.V. Fokin, Ruthenium-catalyzed cycloaddition of nitrile oxides and alkynes: practical synthesis of isoxazoles, Angew. Chem. Int. Ed. 47 (2008) 8285- 8287.
-
[13]
[10] (a) G. Pellegrino, F. Leonetti, A. Carotti, et al., Solid phase synthesis of a molecular library of pyrimidines, pyrazoles, and isoxazoles with biological potential, Tetrahedron Lett. 51 (2010) 1702-1705;
-
[14]
(b) B. Girardin, P.G. Alsabeh, S. Lauzon, S.J. Dolman, S.G. Ouellet, G. Hughes, Synthesis of 3-aminoisoxazoles via the addition—elimination of amines on 3- bromoisoxazolines, Org. Lett. 11 (2009) 1159-1162;
-
[15]
(c) J.P. Xu, A.T. Hamme II, Efficient access to isoxazoles from alkenes, Synlett 6 (2008) 919-923;
-
[16]
(d) F.A. Rosap, P. Machado, H.G. Bonacorso, N. Zanatta, M.A.P. Martins, Reaction of β-dimethylaminovinyl ketones with hydroxylamine: a simple and useful method for synthesis of 3- and 5-substituted isoxazoles, J. Heterocycl. Chem. 45 (2008) 879-885;
-
[17]
(e) J.P. Waldo, R.C. Larock, The synthesis of highly substituted isoxazoles by electrophilic cyclization: an efficient synthesis of valdecoxib, J. Org. Chem. 72 (2007) 9643-9647;
-
[18]
(f) R.F. Kurangi, R. Kawthankar, S. Sawal, V.G. Desai, S.G. Tilve, Convenient synthesis of 3,5-disubstituted isoxazoles, Synth. Commun. 37 (2007) 585-587;
-
[19]
(g) V.G. Desai, S.G. Tilve, A novel and convenient method for the synthesis of 3,5- diarylisoxazoles, Synth. Commun. 29 (1999) 3017-3020;
-
[20]
(h) J.P. Waldo, R.C. Larock, Synthesis of isoxazoles via electrophilic cyclization, Org. Lett. 23 (2005) 5203-5205.
-
[21]
[11] M. Kidwai, S. Kukreja, R. Thakur, K2CO3 mediated regioselective synthesis of isoxazoles and pyrazolines, Lett. Org. Chem. 3 (2006) 135-139.
-
[22]
[12] (a) M.A.P. Martins, C.P. Frizzo, D.N. Moreira, L. Buriol, P. Machado, Solvent-free heterocyclic synthesis, Chem. Rev. 109 (2009) 4140-4182;
-
[23]
(b) A. Rostami, J.A. Akradi, Highly efficient, green, rapid and chemoselective oxidation of sulfides using hydrogen peroxide and boric acid as the catalyst under solvent-free conditions, Tetrahedron Lett. 51 (2010) 3501-3503;
-
[24]
(c) G. Epane, J.C. Laguerre, A. Wadouachi, A. Marek, Microwave-assisted conversion of D-glucose into lactic acid under solvent-free condition, Green Chem. 12 (2010) 502-506;
-
[25]
(d) V. Polshettiwar, R.S. Varma, Ring-fused aminals, catalyst and solvent-free microwave-assisted a amination of nitrogen heterocycles, Tetrahedron Lett. 49 (2008) 7165-7167;
-
[26]
(e) K. Tanaka, F. Toda, Solvent-free organic synthesis, Chem. Rev. 100 (2000) 1025-1074.
-
[27]
[13] (a) O. Prakash, M. Kumar, R. Kumar, C. Sharma, K.R. Aneja, Hypervalent iodine(Ⅲ) mediated synthesis of novel unsymmetrical 2,5-disubstituted 1,3,4- oxadiazoles as antibacterial and antifungal agents, Eur. J. Med. Chem. 45 (2010) 4252-4257;
-
[28]
(b) K.Niedermann, J.M. Welch, R. Koller, et al.,New hypervalent iodine reagents for electrophilic trifluoromethylation and their precursors: synthesis, structure and reactivity, Tetrahedron 66 (2010) 5753-5761;
-
[29]
(c) B.A. Mendelsohn, S. Lee, S. Kim, et al., Oxidation of oximes to nitrile oxides with hypervalent iodine reagent, Org. Lett. 11 (2009) 1539-1542;
-
[30]
(d) F. Felpin, Oxidation of 4-arylphenol trimethylsilyl ethers to p-arylquinols using hypervalent iodine(Ⅲ) reagents, Tetrahedron Lett. 48 (2007) 409-412;
-
[31]
(e) C.B. Singh, H. Ghosh, S. Murru, B.K. Patel, Hypervalent iodine(Ⅲ)-mediated regioselective N-acylation of 1,3-disubstituted thioureas, J. Org. Chem. 73 (2008) 2924-2927;
-
[32]
(f) V.V. Zhdankin, P.J. Stang, Recent developments in the chemistry of polyvalent iodine compounds, Chem. Rev. 102 (2002) 2523-2584.
-
[33]
[14] (a) K.V.G. Chandra Sekhar, V.S. Rao, M.M.K. Kumar, Design, synthesis and preliminary in vitro and in vivo pharmacological evaluation of 2-{4-[4-(2, 5-disubstitutedthiazol-4-yl)phenylethyl]piperazin-1-yl}-1,8-naphthyridine-3-carbonitriles as atypical antipsychotic agents, J. Enzyme Inhib. Med. Chem. 24 (2009) 871-875;
-
[34]
(b) D.Kumar, K.V.G. Chandra Sekhar, H.Dhillon, V.S. Rao, R.S. Varma, Anexpeditious synthesis of 1-aryl-4-methyl-1,2,4-triazolo [4,3-a] quinoxalines under solvent-free conditions using iodobenzene diacetate, Green Chem. 6 (2004) 156-157;
-
[35]
(c) V.S. Rao, K.V.G. Chandra Sekhar, Iodobenzene diacetate mediated solid-state synthesis of heterocyclic 1,3,4-oxadiazoles, Synth. Commun. 34 (2004) 2153-2157.
-
[36]
[15] G. Rothenberg, A.P. Downie, C.L. Raston, J.L. Scott, Understanding solid/solid organic reactions, J. Am. Chem. Soc. 123 (2001) 8701-8708.
-
[37]
[16] (a) X. Wei, J. Fang, Y. Hu, H. Hu, Convenient preparation of 3,5-diarylisoxazoles, Synthesis 12 (1992) 1205-1206;
-
[38]
(b) F. Himo, T. Lovell, R. Hilgraf, et al., Copper(Ⅰ)-catalyzed synthesis of azoles. DFT study predicts unprecedented reactivity and intermediates, J. Am. Chem. Soc. 127 (2005) 210-216;
-
[39]
(c) S. Tang, J. He, Y. Sun, L. He, X. She, Efficient and regioselective one-pot synthesis of 3-substituted and 3,5-disubstituted isoxazoles, Org. Lett. 11 (2009) 3982-3985;
-
[40]
(d) A.Y. Deshmukh, P.B. Raghuwanshi, A.G. Doshi, Synthesis and dehydrogenation of isoxazolines by using DMSO-I2-H2SO4 and DMSO-I2 system, Asian J. Chem. 14 (2002) 548-550.
-
[1]
-
-
-
[1]
Mengxiang Zhu , Tao Ding , Yunzhang Li , Yuanjie Peng , Ruiping Liu , Quan Zou , Leilei Yang , Shenglei Sun , Pin Zhou , Guosheng Shi , Dongting Yue . Graphene controlled solid-state growth of oxygen vacancies riched V2O5 catalyst to highly activate Fenton-like reaction. Chinese Chemical Letters, 2024, 35(12): 109833-. doi: 10.1016/j.cclet.2024.109833
-
[2]
Biao Fang , Runwei Mo . PVDF-based solid-state battery. Chinese Journal of Structural Chemistry, 2024, 43(8): 100347-100347. doi: 10.1016/j.cjsc.2024.100347
-
[3]
Xinzhi Ding , Chong Liu , Jing Niu , Nan Chen , Shutao Xu , Yingxu Wei , Zhongmin Liu . Solid-state NMR study of the stability of MOR framework aluminum. Chinese Journal of Structural Chemistry, 2024, 43(4): 100247-100247. doi: 10.1016/j.cjsc.2024.100247
-
[4]
Tianyi Hou , Yunhui Huang , Henghui Xu . Interfacial engineering for advanced solid-state Li-metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100313-100313. doi: 10.1016/j.cjsc.2024.100313
-
[5]
Peng Jia , Yunna Guo , Dongliang Chen , Xuedong Zhang , Jingming Yao , Jianguo Lu , Liqiang Zhang . In-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624
-
[6]
Qianqian Song , Yunting Zhang , Jianli Liang , Si Liu , Jian Zhu , Xingbin Yan . Boron nitride nanofibers enhanced composite PEO-based solid-state polymer electrolytes for lithium metal batteries. Chinese Chemical Letters, 2024, 35(6): 108797-. doi: 10.1016/j.cclet.2023.108797
-
[7]
Chaochao Wei , Ru Wang , Zhongkai Wu , Qiyue Luo , Ziling Jiang , Liang Ming , Jie Yang , Liping Wang , Chuang Yu . Revealing the size effect of FeS2 on solid-state battery performances at different operating temperatures. Chinese Chemical Letters, 2024, 35(6): 108717-. doi: 10.1016/j.cclet.2023.108717
-
[8]
Caixia Li , Yi Qiu , Yufeng Zhao , Wuliang Feng . Self assembled electron blocking and lithiophilic interface towards dendrite-free solid-state lithium battery. Chinese Chemical Letters, 2024, 35(4): 108846-. doi: 10.1016/j.cclet.2023.108846
-
[9]
Ting WANG , Peipei ZHANG , Shuqin LIU , Ruihong WANG , Jianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134
-
[10]
Ying Li , Yanjun Xu , Xingqi Han , Di Han , Xuesong Wu , Xinlong Wang , Zhongmin Su . A new metal–organic rotaxane framework for enhanced ion conductivity of solid-state electrolyte in lithium-metal batteries. Chinese Chemical Letters, 2024, 35(9): 109189-. doi: 10.1016/j.cclet.2023.109189
-
[11]
Yang Deng , Yitao Ouyang , Chao Han . Constriction-susceptible makes fast cycling of lithium metal in solid-state batteries: Silicon as an example. Chinese Journal of Structural Chemistry, 2024, 43(7): 100276-100276. doi: 10.1016/j.cjsc.2024.100276
-
[12]
Dong Sui , Jiayi Liu . Constriction-susceptible lithium support for fast cycling of solid-state lithium metal battery. Chinese Chemical Letters, 2025, 36(2): 110417-. doi: 10.1016/j.cclet.2024.110417
-
[13]
Linhui Liu , Wuwan Xiong , Mingli Fu , Junliang Wu , Zhenguo Li , Daiqi Ye , Peirong Chen . Efficient NOx abatement by passive adsorption over a Pd-SAPO-34 catalyst prepared by solid-state ion exchange. Chinese Chemical Letters, 2024, 35(4): 108870-. doi: 10.1016/j.cclet.2023.108870
-
[14]
Shuai Li , Liuting Zhang , Fuying Wu , Yiqun Jiang , Xuebin Yu . Efficient catalysis of FeNiCu-based multi-site alloys on magnesium-hydride for solid-state hydrogen storage. Chinese Chemical Letters, 2025, 36(1): 109566-. doi: 10.1016/j.cclet.2024.109566
-
[15]
Xin Li , Ling Zhang , Yunyan Fan , Shaojing Lin , Yong Lin , Yongsheng Ying , Meijiao Hu , Haiying Gao , Xianri Xu , Zhongbiao Xia , Xinchuan Lin , Junjie Lu , Xiang Han . Carbon interconnected microsized Si film toward high energy room temperature solid-state lithium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109776-. doi: 10.1016/j.cclet.2024.109776
-
[16]
Ziling Jiang , Shaoqing Chen , Chaochao Wei , Ziqi Zhang , Zhongkai Wu , Qiyue Luo , Liang Ming , Long Zhang , Chuang Yu . Enabling superior electrochemical performance of NCA cathode in Li5.5PS4.5Cl1.5-based solid-state batteries with a dual-electrolyte layer. Chinese Chemical Letters, 2024, 35(4): 108561-. doi: 10.1016/j.cclet.2023.108561
-
[17]
Zizhuo Liang , Fuming Du , Ning Zhao , Xiangxin Guo . Revealing the reason for the unsuccessful fabrication of Li3Zr2Si2PO12 by solid state reaction. Chinese Journal of Structural Chemistry, 2023, 42(11): 100108-100108. doi: 10.1016/j.cjsc.2023.100108
-
[18]
Qian Wang , Ting Gao , Xiwen Lu , Hangchao Wang , Minggui Xu , Longtao Ren , Zheng Chang , Wen Liu . Nanophase separated, grafted alternate copolymer styrene-maleic anhydride as an efficient room temperature solid state lithium ion conductor. Chinese Chemical Letters, 2024, 35(7): 108887-. doi: 10.1016/j.cclet.2023.108887
-
[19]
Liang Ming , Dan Liu , Qiyue Luo , Chaochao Wei , Chen Liu , Ziling Jiang , Zhongkai Wu , Lin Li , Long Zhang , Shijie Cheng , Chuang Yu . Si-doped Li6PS5I with enhanced conductivity enables superior performance for all-solid-state lithium batteries. Chinese Chemical Letters, 2024, 35(10): 109387-. doi: 10.1016/j.cclet.2023.109387
-
[20]
Xuejie Gao , Xinyang Chen , Ming Jiang , Hanyan Wu , Wenfeng Ren , Xiaofei Yang , Runcang Sun . Long-lifespan thin Li anode achieved by dead Li rejuvenation and Li dendrite suppression for all-solid-state lithium batteries. Chinese Chemical Letters, 2024, 35(10): 109448-. doi: 10.1016/j.cclet.2023.109448
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(807)
- HTML views(55)