Citation: Kondapalli Venkata Gowri Chandra Sekhar, Thripuraribhatla Venkata Naga Varuna Tara Sasank, Hunsur Nagendra Nagesh, Narva Suresh, Kalaga Mahalakshmi Naidu, Amaroju Suresh. Synthesis of 3,5-diarylisoxazoles under solvent-free conditions using iodobenzene diacetate[J]. Chinese Chemical Letters, ;2013, 24(12): 1045-1048. shu

Synthesis of 3,5-diarylisoxazoles under solvent-free conditions using iodobenzene diacetate

  • Corresponding author: Kondapalli Venkata Gowri Chandra Sekhar, 
  • Received Date: 28 March 2013
    Available Online: 17 June 2013

  • A simple and efficient method has been developed for conversion of chalcone oximes to 3,5-diaryl isoxazoles in excellent yields under solvent-free conditions. The synthesized compounds were characterized by infrared spectroscopy, 1H NMR, 13C NMR and HRMS.
  • 加载中
    1. [1]

      [1] V.A. Makarov, O.B. Riabova, V.G. Granik, P. Wutzler, M. Schmidtke, Novel [(biphenyloxy) propyl]isoxazole derivatives for inhibition of human rhinovirus 2 and coxsackievirus B3 replication, J. Antimicrob. Chemother. 5 (2005) 483-488.

    2. [2]

      [2] A. Padmaja, T. Payani, G. Dinneswara Reddy, V. Padmavathi, Synthesis, antimicrobial and antioxidant activities of substituted pyrazoles, isoxazoles, pyrimidine and thioxopyrimidine derivatives, Eur. J. Med. Chem. 44 (2009) 4557-4566.

    3. [3]

      [3] G. Amgad, P.N. Habeeb, R. Praveen, E.E. Knaus, Design and synthesis of 4,5- diphenyl-4-isoxazolines: novel inhibitors of cyclooxygenase-2 with analgesic and antiinflammatory activity, J. Med. Chem. 44 (2001) 2921-2927.

    4. [4]

      [4] S. Balalaie, A. Sharifi, B. Ahangarian, Solid phase synthesis of isoxazole and pyrazole derivatives under microwave irradiation, Indian J. Heterocycl. Chem. 10 (2000) 149-150.

    5. [5]

      [5] A. Kumar, R.A. Maurya, S. Sharma, et al., Design and synthesis of 3,5-diarylisoxazole derivatives as novel class of anti-hyperglycemic and lipid lowering agents, Bioorg. Med. Chem. 17 (2009) 5285-5292.

    6. [6]

      [6] P. Diana, A. Carbone, P. Barraja, et al., Synthesis and antitumor activity of 2,5- bis(3'-indolyl)-furans and 3,5-bis(3'-indolyl)-isoxazoles, nortopsentin analogues, Bioorg. Med. Chem. 18 (2010) 4524-4529.

    7. [7]

      [7] (a) E. Schaumann, in: E. Schaumann (Ed.), Science of Synthesis, Houben-Weyl methods of molecular transformations, Georg Thieme Verlag, Stuttgart, 2001, pp. 229-288;

    8. [8]

      (b) T.M.V.D. Pinho eMelo, Recent advances on the synthesis and reactivity of isoxazoles, Curr. Org. Chem. 9 (2005) 925-958.

    9. [9]

      [8] V. Jager, P.A. Colinas, in: A. Padwa, W.H. Pearson (Eds.), Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry Toward Heterocycles and Natural Products, Wiley, Hoboken, 2002, pp. 361-472.

    10. [10]

      [9] (a) F. Himo, T. Lovell, R. Hilgraf, et al., Copper (I)-catalyzed synthesis of azoles. DFT study predicts unprecedented reactivity and intermediates, J. Am. Chem. Soc. 127 (2005) 210-216;

    11. [11]

      (b) T.V. Hansen, P. Wu, V.V. Fokin, One-pot copper(I)-catalyzed synthesis of 3,5- disubstituted isoxazoles, J. Org. Chem. 70 (2005) 7761-7764;

    12. [12]

      (c) S. Grecian, V.V. Fokin, Ruthenium-catalyzed cycloaddition of nitrile oxides and alkynes: practical synthesis of isoxazoles, Angew. Chem. Int. Ed. 47 (2008) 8285- 8287.

    13. [13]

      [10] (a) G. Pellegrino, F. Leonetti, A. Carotti, et al., Solid phase synthesis of a molecular library of pyrimidines, pyrazoles, and isoxazoles with biological potential, Tetrahedron Lett. 51 (2010) 1702-1705;

    14. [14]

      (b) B. Girardin, P.G. Alsabeh, S. Lauzon, S.J. Dolman, S.G. Ouellet, G. Hughes, Synthesis of 3-aminoisoxazoles via the addition—elimination of amines on 3- bromoisoxazolines, Org. Lett. 11 (2009) 1159-1162;

    15. [15]

      (c) J.P. Xu, A.T. Hamme II, Efficient access to isoxazoles from alkenes, Synlett 6 (2008) 919-923;

    16. [16]

      (d) F.A. Rosap, P. Machado, H.G. Bonacorso, N. Zanatta, M.A.P. Martins, Reaction of β-dimethylaminovinyl ketones with hydroxylamine: a simple and useful method for synthesis of 3- and 5-substituted isoxazoles, J. Heterocycl. Chem. 45 (2008) 879-885;

    17. [17]

      (e) J.P. Waldo, R.C. Larock, The synthesis of highly substituted isoxazoles by electrophilic cyclization: an efficient synthesis of valdecoxib, J. Org. Chem. 72 (2007) 9643-9647;

    18. [18]

      (f) R.F. Kurangi, R. Kawthankar, S. Sawal, V.G. Desai, S.G. Tilve, Convenient synthesis of 3,5-disubstituted isoxazoles, Synth. Commun. 37 (2007) 585-587;

    19. [19]

      (g) V.G. Desai, S.G. Tilve, A novel and convenient method for the synthesis of 3,5- diarylisoxazoles, Synth. Commun. 29 (1999) 3017-3020;

    20. [20]

      (h) J.P. Waldo, R.C. Larock, Synthesis of isoxazoles via electrophilic cyclization, Org. Lett. 23 (2005) 5203-5205.

    21. [21]

      [11] M. Kidwai, S. Kukreja, R. Thakur, K2CO3 mediated regioselective synthesis of isoxazoles and pyrazolines, Lett. Org. Chem. 3 (2006) 135-139.

    22. [22]

      [12] (a) M.A.P. Martins, C.P. Frizzo, D.N. Moreira, L. Buriol, P. Machado, Solvent-free heterocyclic synthesis, Chem. Rev. 109 (2009) 4140-4182;

    23. [23]

      (b) A. Rostami, J.A. Akradi, Highly efficient, green, rapid and chemoselective oxidation of sulfides using hydrogen peroxide and boric acid as the catalyst under solvent-free conditions, Tetrahedron Lett. 51 (2010) 3501-3503;

    24. [24]

      (c) G. Epane, J.C. Laguerre, A. Wadouachi, A. Marek, Microwave-assisted conversion of D-glucose into lactic acid under solvent-free condition, Green Chem. 12 (2010) 502-506;

    25. [25]

      (d) V. Polshettiwar, R.S. Varma, Ring-fused aminals, catalyst and solvent-free microwave-assisted a amination of nitrogen heterocycles, Tetrahedron Lett. 49 (2008) 7165-7167;

    26. [26]

      (e) K. Tanaka, F. Toda, Solvent-free organic synthesis, Chem. Rev. 100 (2000) 1025-1074.

    27. [27]

      [13] (a) O. Prakash, M. Kumar, R. Kumar, C. Sharma, K.R. Aneja, Hypervalent iodine(Ⅲ) mediated synthesis of novel unsymmetrical 2,5-disubstituted 1,3,4- oxadiazoles as antibacterial and antifungal agents, Eur. J. Med. Chem. 45 (2010) 4252-4257;

    28. [28]

      (b) K.Niedermann, J.M. Welch, R. Koller, et al.,New hypervalent iodine reagents for electrophilic trifluoromethylation and their precursors: synthesis, structure and reactivity, Tetrahedron 66 (2010) 5753-5761;

    29. [29]

      (c) B.A. Mendelsohn, S. Lee, S. Kim, et al., Oxidation of oximes to nitrile oxides with hypervalent iodine reagent, Org. Lett. 11 (2009) 1539-1542;

    30. [30]

      (d) F. Felpin, Oxidation of 4-arylphenol trimethylsilyl ethers to p-arylquinols using hypervalent iodine(Ⅲ) reagents, Tetrahedron Lett. 48 (2007) 409-412;

    31. [31]

      (e) C.B. Singh, H. Ghosh, S. Murru, B.K. Patel, Hypervalent iodine(Ⅲ)-mediated regioselective N-acylation of 1,3-disubstituted thioureas, J. Org. Chem. 73 (2008) 2924-2927;

    32. [32]

      (f) V.V. Zhdankin, P.J. Stang, Recent developments in the chemistry of polyvalent iodine compounds, Chem. Rev. 102 (2002) 2523-2584.

    33. [33]

      [14] (a) K.V.G. Chandra Sekhar, V.S. Rao, M.M.K. Kumar, Design, synthesis and preliminary in vitro and in vivo pharmacological evaluation of 2-{4-[4-(2, 5-disubstitutedthiazol-4-yl)phenylethyl]piperazin-1-yl}-1,8-naphthyridine-3-carbonitriles as atypical antipsychotic agents, J. Enzyme Inhib. Med. Chem. 24 (2009) 871-875;

    34. [34]

      (b) D.Kumar, K.V.G. Chandra Sekhar, H.Dhillon, V.S. Rao, R.S. Varma, Anexpeditious synthesis of 1-aryl-4-methyl-1,2,4-triazolo [4,3-a] quinoxalines under solvent-free conditions using iodobenzene diacetate, Green Chem. 6 (2004) 156-157;

    35. [35]

      (c) V.S. Rao, K.V.G. Chandra Sekhar, Iodobenzene diacetate mediated solid-state synthesis of heterocyclic 1,3,4-oxadiazoles, Synth. Commun. 34 (2004) 2153-2157.

    36. [36]

      [15] G. Rothenberg, A.P. Downie, C.L. Raston, J.L. Scott, Understanding solid/solid organic reactions, J. Am. Chem. Soc. 123 (2001) 8701-8708.

    37. [37]

      [16] (a) X. Wei, J. Fang, Y. Hu, H. Hu, Convenient preparation of 3,5-diarylisoxazoles, Synthesis 12 (1992) 1205-1206;

    38. [38]

      (b) F. Himo, T. Lovell, R. Hilgraf, et al., Copper(Ⅰ)-catalyzed synthesis of azoles. DFT study predicts unprecedented reactivity and intermediates, J. Am. Chem. Soc. 127 (2005) 210-216;

    39. [39]

      (c) S. Tang, J. He, Y. Sun, L. He, X. She, Efficient and regioselective one-pot synthesis of 3-substituted and 3,5-disubstituted isoxazoles, Org. Lett. 11 (2009) 3982-3985;

    40. [40]

      (d) A.Y. Deshmukh, P.B. Raghuwanshi, A.G. Doshi, Synthesis and dehydrogenation of isoxazolines by using DMSO-I2-H2SO4 and DMSO-I2 system, Asian J. Chem. 14 (2002) 548-550.

  • 加载中
    1. [1]

      Mengxiang ZhuTao DingYunzhang LiYuanjie PengRuiping LiuQuan ZouLeilei YangShenglei SunPin ZhouGuosheng ShiDongting Yue . Graphene controlled solid-state growth of oxygen vacancies riched V2O5 catalyst to highly activate Fenton-like reaction. Chinese Chemical Letters, 2024, 35(12): 109833-. doi: 10.1016/j.cclet.2024.109833

    2. [2]

      Biao Fang Runwei Mo . PVDF-based solid-state battery. Chinese Journal of Structural Chemistry, 2024, 43(8): 100347-100347. doi: 10.1016/j.cjsc.2024.100347

    3. [3]

      Xinzhi Ding Chong Liu Jing Niu Nan Chen Shutao Xu Yingxu Wei Zhongmin Liu . Solid-state NMR study of the stability of MOR framework aluminum. Chinese Journal of Structural Chemistry, 2024, 43(4): 100247-100247. doi: 10.1016/j.cjsc.2024.100247

    4. [4]

      Tianyi Hou Yunhui Huang Henghui Xu . Interfacial engineering for advanced solid-state Li-metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100313-100313. doi: 10.1016/j.cjsc.2024.100313

    5. [5]

      Peng JiaYunna GuoDongliang ChenXuedong ZhangJingming YaoJianguo LuLiqiang ZhangIn-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624

    6. [6]

      Qianqian SongYunting ZhangJianli LiangSi LiuJian ZhuXingbin Yan . Boron nitride nanofibers enhanced composite PEO-based solid-state polymer electrolytes for lithium metal batteries. Chinese Chemical Letters, 2024, 35(6): 108797-. doi: 10.1016/j.cclet.2023.108797

    7. [7]

      Chaochao WeiRu WangZhongkai WuQiyue LuoZiling JiangLiang MingJie YangLiping WangChuang Yu . Revealing the size effect of FeS2 on solid-state battery performances at different operating temperatures. Chinese Chemical Letters, 2024, 35(6): 108717-. doi: 10.1016/j.cclet.2023.108717

    8. [8]

      Caixia LiYi QiuYufeng ZhaoWuliang Feng . Self assembled electron blocking and lithiophilic interface towards dendrite-free solid-state lithium battery. Chinese Chemical Letters, 2024, 35(4): 108846-. doi: 10.1016/j.cclet.2023.108846

    9. [9]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    10. [10]

      Ying LiYanjun XuXingqi HanDi HanXuesong WuXinlong WangZhongmin Su . A new metal–organic rotaxane framework for enhanced ion conductivity of solid-state electrolyte in lithium-metal batteries. Chinese Chemical Letters, 2024, 35(9): 109189-. doi: 10.1016/j.cclet.2023.109189

    11. [11]

      Yang Deng Yitao Ouyang Chao Han . Constriction-susceptible makes fast cycling of lithium metal in solid-state batteries: Silicon as an example. Chinese Journal of Structural Chemistry, 2024, 43(7): 100276-100276. doi: 10.1016/j.cjsc.2024.100276

    12. [12]

      Dong SuiJiayi Liu . Constriction-susceptible lithium support for fast cycling of solid-state lithium metal battery. Chinese Chemical Letters, 2025, 36(2): 110417-. doi: 10.1016/j.cclet.2024.110417

    13. [13]

      Linhui LiuWuwan XiongMingli FuJunliang WuZhenguo LiDaiqi YePeirong Chen . Efficient NOx abatement by passive adsorption over a Pd-SAPO-34 catalyst prepared by solid-state ion exchange. Chinese Chemical Letters, 2024, 35(4): 108870-. doi: 10.1016/j.cclet.2023.108870

    14. [14]

      Shuai LiLiuting ZhangFuying WuYiqun JiangXuebin Yu . Efficient catalysis of FeNiCu-based multi-site alloys on magnesium-hydride for solid-state hydrogen storage. Chinese Chemical Letters, 2025, 36(1): 109566-. doi: 10.1016/j.cclet.2024.109566

    15. [15]

      Xin LiLing ZhangYunyan FanShaojing LinYong LinYongsheng YingMeijiao HuHaiying GaoXianri XuZhongbiao XiaXinchuan LinJunjie LuXiang Han . Carbon interconnected microsized Si film toward high energy room temperature solid-state lithium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109776-. doi: 10.1016/j.cclet.2024.109776

    16. [16]

      Ziling JiangShaoqing ChenChaochao WeiZiqi ZhangZhongkai WuQiyue LuoLiang MingLong ZhangChuang Yu . Enabling superior electrochemical performance of NCA cathode in Li5.5PS4.5Cl1.5-based solid-state batteries with a dual-electrolyte layer. Chinese Chemical Letters, 2024, 35(4): 108561-. doi: 10.1016/j.cclet.2023.108561

    17. [17]

      Zizhuo Liang Fuming Du Ning Zhao Xiangxin Guo . Revealing the reason for the unsuccessful fabrication of Li3Zr2Si2PO12 by solid state reaction. Chinese Journal of Structural Chemistry, 2023, 42(11): 100108-100108. doi: 10.1016/j.cjsc.2023.100108

    18. [18]

      Qian WangTing GaoXiwen LuHangchao WangMinggui XuLongtao RenZheng ChangWen Liu . Nanophase separated, grafted alternate copolymer styrene-maleic anhydride as an efficient room temperature solid state lithium ion conductor. Chinese Chemical Letters, 2024, 35(7): 108887-. doi: 10.1016/j.cclet.2023.108887

    19. [19]

      Liang MingDan LiuQiyue LuoChaochao WeiChen LiuZiling JiangZhongkai WuLin LiLong ZhangShijie ChengChuang Yu . Si-doped Li6PS5I with enhanced conductivity enables superior performance for all-solid-state lithium batteries. Chinese Chemical Letters, 2024, 35(10): 109387-. doi: 10.1016/j.cclet.2023.109387

    20. [20]

      Xuejie GaoXinyang ChenMing JiangHanyan WuWenfeng RenXiaofei YangRuncang Sun . Long-lifespan thin Li anode achieved by dead Li rejuvenation and Li dendrite suppression for all-solid-state lithium batteries. Chinese Chemical Letters, 2024, 35(10): 109448-. doi: 10.1016/j.cclet.2023.109448

Metrics
  • PDF Downloads(0)
  • Abstract views(807)
  • HTML views(55)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return