Citation: Qing-Shan Du, Yan-Xia Shi, Peng-Fei Li, Zhen-Jiang Zhao, Wei-Ping Zhu, Xu-Hong Qian, Bao-Ju Li, Yu-Fang Xu. Novel plant activators with thieno[2,3-d]-1,2,3-thiadiazole-6-carboxylate scaffold: Synthesis and bioactivity[J]. Chinese Chemical Letters, ;2013, 24(11): 967-969. shu

Novel plant activators with thieno[2,3-d]-1,2,3-thiadiazole-6-carboxylate scaffold: Synthesis and bioactivity

  • Corresponding author: Bao-Ju Li,  Yu-Fang Xu, 
  • Received Date: 17 April 2013
    Available Online: 9 June 2013

  • The 1,2,3-thiadiazole-carboxylate moiety was reported to be an important pharmacophore of plant activators. In this study, a series of novel plant activators based on thieno[2,3-d]-1,2,3-thiadiazole-6-carboxylate were designed and synthesized and their biological activity as plant activators was studied. The structures of the novel compounds were identified by 1H NMR, 19F NMR and HRMS. The in vivo bioassay showed that these novel compounds had good efficacy against seven plant diseases. Especially, compounds 1a and 1c were more potent than the commercialized plant activator BTH. Almost no fungicidal activity was observed for the active compounds in the in vivo assay, which matched the requirements as plant activators.
  • 加载中
    1. [1]

      [1] L. Bos, Crop losses caused by viruses, Crop Prot. 1 (1982) 263-282.

    2. [2]

      [2] G. Loake, M. Grant, Salicylic acid in plant defense-the players and protagonists, Curr. Opin. Plant Biol. 10 (2007) 466-472.

    3. [3]

      [3] J.G. Turner, C. Ellis, A. Devoto, The jasmonate signal pathway, Plant Cell Online 14 (2002) S153-S164.

    4. [4]

      [4] S.W. Park, E. Kaimoyo, D. Kumar, S. Mosher, D.F. Klessig, Methyl salicylate is a critical mobile signal for plant systemic acquired resistance, Science 318 (2007) 113-116.

    5. [5]

      [5] J.A. Ryals, U.H. Neuenschwander, M.G. Willits, et al., Systemic acquired resistance, Plant Cell Online 8 (1996) 1809-1819.

    6. [6]

      [6] I.T. Baldwin, C.A. Preston, The eco-physiological complexity of plant responses to insect herbivores, Planta 208 (1999) 137-145.

    7. [7]

      [7] W. Kunz, R. Schurter, T. Maetzke, The chemistry of benzothiadiazole plant activators, Pestic. Sci. 50 (1997) 275-282.

    8. [8]

      [8] L. Sticher, B. MauchMani, J.P. Metraux, Systemic acquired resistance, Annu. Rev. Phytopathol. 35 (1997) 235-270.

    9. [9]

      [9] K.A. Lawton, L. Friedrich, M. Hunt, et al., Benzothiadiazole induces disease resistance in arabidopsis by activation of the systemic acquired resistance signal transduction pathway, Plant J. 10 (1996) 71-82.

    10. [10]

      [10] J. GoÉlach, S. Volrath, G. Knauf-Beiter, et al., Benzothiadiazole, a novel class of inducers of systemic acquired resistance, activates gene expression and disease resistance in wheat, Plant Cell Online 8 (1996) 629-643.

    11. [11]

      [11] N. Benhamou, R.R. Belanger, Benzothiadiazole-mediated induced resistance to fusarium oxysporum f. sp. radicis-lycopersici in tomato, Plant Physiol. 118 (1998) 1203-1212.

    12. [12]

      [12] N. Benhamou, R.R. Belanger, Induction of systemic resistance to pythium damping-off in cucumber plants by benzothiadiazole: ultrastructure and cytochemistry of the host response, Plant J. 14 (1998) 13-21.

    13. [13]

      [13] K.A. Ford, J.E. Casida, D. Chandran, et al., Neonicotinoid insecticides induce salicylate-associated plant defense responses, Proc. Natl. Acad. Sci. U.S.A. 107 (2010) 17527-17532.

    14. [14]

      [14] M. Yasuda, H. Nakashita, S. Yoshida, Tiadinil, a novel class of activator of systemic acquired resistance, induces defense gene expression and disease resistance in tobacco, J. Pestic. Sci. 29 (2004) 46-49.

    15. [15]

      [15] Z.J. Fan, Z.G. Shi, H.K. Zhang, et al., Synthesis and biological activity evaluation of 1,2,3-thiadiazole derivatives as potential elicitors with highly systemic acquired resistance, J. Agric. Food Chem. 57 (2009) 4279-4286.

    16. [16]

      [16] M. Ogawa, A. Kadowaki, T. Yamada, O. Kadooka, Applied development of a novel fungicide Isotianil, Sumitomo Kagaku (Osaka, Japan) 1 (2011) 4-17.

    17. [17]

      [17] C.M.J. Pieterse, A. Leon-Reyes, S. Van der Ent, S.C.M. Van Wees, Networking by small-molecule hormones in plant immunity, Nat. Chem. Biol. 5 (2009) 308-316.

    18. [18]

      [18] M. Iwata, Probenazole-a plant defence activator, Pestic. Outlook 12 (2001) 28-31.

    19. [19]

      [19] M. Nishioka, H. Nakashita, H. Suzuki, et al., Induction of resistance against rice blast disease by a novel class of plant activator, pyrazolecarboxylic acid derivatives, J. Pestic. Sci. 28 (2003) 416-421.

    20. [20]

      [20] F. Gozzo, Systemic acquired resistance in crop protection: from nature to a chemical approach, J. Agric. Food Chem. 51 (2003) 4487-4503.

    21. [21]

      [21] M. Yasuda, M. Kusajima, M. Nakajima, et al., Thiadiazole carboxylic acid moiety of tiadinil, SV-03, induces systemic acquired resistance in tobacco without salicylic acid accumulation, J. Pestic. Sci. 31 (2006) 329-334.

    22. [22]

      [22] Y.F. Xu, Z.J. Zhao, X.H. Qian, et al., Novel, unnatural benzo-1,2,3-thiadiazole-7-carboxylate elicitors of taxoid biosynthesis, J. Agric. Food Chem. 54 (2006) 8793-8798.

    23. [23]

      [23] Q.S. Du, W.P. Zhu, Z.J. Zhao, X.H. Qian, Y.F. Xu, Novel benzo-1,2,3-thiadiazole-7-carboxylate derivatives as plant activators and the development of their agricultural applications, J. Agric. Food Chem. 60 (2012) 346-353.

    24. [24]

      [24] P. Stanetty, M. Kremslehner, H. Vollenkle, A new type of plant activator: synthesis of thieno[2,3-d][1,2,3]thiadiazole-6-carboxylic acid derivatives via Hurd-Mori cyclization, J. Chem. Soc. Perkin Trans. 1 (1998) 853-856.

    25. [25]

      [25] P. Stanetty, E. Gorner, M.D. Mihovilovic, An improved synthetic approach to thieno[2,3-d]-1,2,3-thiadiazole-carboxylates via diazotization of aminothiophene derivatives, J. Heterocycl. Chem. 36 (1999) 761-765.

    26. [26]

      [26] H. Kessmann, T. Staub, J. Ligon, M. Oostendorp, J. Ryals, Activation of systemic acquired disease resistance in plants, Eur. J. Plant Pathol. 100 (1994) 359-369.

  • 加载中
    1. [1]

      Bairu MengZongji ZhuoHan YuSining TaoZixuan ChenErik De ClercqChristophe PannecouqueDongwei KangPeng ZhanXinyong Liu . Design, synthesis, and biological evaluation of benzo[4,5]thieno[2,3-d]pyrimidine derivatives as novel HIV-1 NNRTIs. Chinese Chemical Letters, 2024, 35(6): 108827-. doi: 10.1016/j.cclet.2023.108827

    2. [2]

      Liping ZhaoXixi GuoZhimeng ZhangXi LuQingxuan ZengTianyun FanXintong ZhangFenbei ChenMengyi XuMin YuanZhenjun LiJiandong JiangJing PangXuefu YouYanxiang WangDanqing Song . Novel berberine derivatives as adjuvants in the battle against Acinetobacter baumannii: A promising strategy for combating multi-drug resistance. Chinese Chemical Letters, 2024, 35(10): 109506-. doi: 10.1016/j.cclet.2024.109506

    3. [3]

      Deli ChenJiawen LiXudong XuZhaocui SunYun YangMinghui XuHanqiao LiangJunshan YangHui MengGuoxu MaJianhe Wei . Plant-microbial interactions inspired the discovery of novel sesquiterpenoid dimeric skeletons of hidden natural products from Hibiscus tiliaceus. Chinese Chemical Letters, 2024, 35(10): 109451-. doi: 10.1016/j.cclet.2023.109451

    4. [4]

      Hai-Yang SongJun JiangYu-Hang SongMin-Hang ZhouChao WuXiang ChenWei-Min He . Supporting-electrolyte-free electrochemical [2 + 2 + 1] annulation of benzo[d]isothiazole 1,1-dioxides, N-arylglycines and paraformaldehyde. Chinese Chemical Letters, 2024, 35(6): 109246-. doi: 10.1016/j.cclet.2023.109246

    5. [5]

      Jinge ZhuAiling TangLeyi TangPeiqing CongChao LiQing GuoZongtao WangXiaoru XuJiang WuErjun Zhou . Chlorination of benzyl group on the terminal unit of A2-A1-D-A1-A2 type nonfullerene acceptor for high-voltage organic solar cells. Chinese Chemical Letters, 2025, 36(1): 110233-. doi: 10.1016/j.cclet.2024.110233

    6. [6]

      Yong-Dan ZhaoYidan WangRongrong WangLina ChenHengtong ZuoXi WangJihong QiangGeng WangQingxia LiCanqi PingShuqiu ZhangHao Wang . Reversing artemisinin resistance by leveraging thermo-responsive nanoplatform to downregulating GSH. Chinese Chemical Letters, 2024, 35(6): 108929-. doi: 10.1016/j.cclet.2023.108929

    7. [7]

      Yixuan WangJiexin LiZhihao ShangChengcheng FengJianmin GuMaosheng YeRan ZhaoDanna LiuJingxin MengShutao Wang . Wettability-driven synergistic resistance of scale and oil on robust superamphiphobic coating. Chinese Chemical Letters, 2024, 35(7): 109623-. doi: 10.1016/j.cclet.2024.109623

    8. [8]

      Yuxin LiChengbin LiuQiuju LiShun Mao . Fluorescence analysis of antibiotics and antibiotic-resistance genes in the environment: A mini review. Chinese Chemical Letters, 2024, 35(10): 109541-. doi: 10.1016/j.cclet.2024.109541

    9. [9]

      Shaoqing DuXinyong LiuXueping HuPeng Zhan . Targeting novel sites represents an effective strategy for combating drug resistance. Chinese Chemical Letters, 2025, 36(1): 110378-. doi: 10.1016/j.cclet.2024.110378

    10. [10]

      Xiaofang LuoYe WuXiaokun ZhangMin TangFeiye JuZuodong QinGregory J DunsWei-Dong ZhangJiang-Jiang QinXin Luan . Peptide-based strategies for overcoming multidrug-resistance in cancer therapy. Chinese Chemical Letters, 2025, 36(1): 109724-. doi: 10.1016/j.cclet.2024.109724

    11. [11]

      Yulong ShiFenbei ChenMengyuan WuXin ZhangRunze MengKun WangYan WangYuheng MeiQionglu DuanYinghong LiRongmei GaoYuhuan LiHongbin DengJiandong JiangYanxiang WangDanqing Song . Chemical construction and anti-HCoV-OC43 evaluation of novel 10,12-disubstituted aloperine derivatives as dual cofactor inhibitors of TMPRSS2 and SR-B1. Chinese Chemical Letters, 2024, 35(5): 108792-. doi: 10.1016/j.cclet.2023.108792

    12. [12]

      Junjun HuangRan ChenYajian HuangHang ZhangAnran ZhengQing XiaoDan WuRuxia DuanZhi ZhouFei HeWei Yi . Discovery of an enantiopure N-[2-hydroxy-3-phenyl piperazine propyl]-aromatic carboxamide derivative as highly selective α1D/1A-adrenoceptor antagonist and homology modelling. Chinese Chemical Letters, 2024, 35(11): 109594-. doi: 10.1016/j.cclet.2024.109594

    13. [13]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    14. [14]

      Liyong DingZhenhua PanQian Wang . 2D photocatalysts for hydrogen peroxide synthesis. Chinese Chemical Letters, 2024, 35(12): 110125-. doi: 10.1016/j.cclet.2024.110125

    15. [15]

      Xiao XiaoBiao ChenJia-Wei LiJun-Bo ZhengXu WangHang ZhaoFen-Er Chen . Nitrite-catalyzed economic and sustainable bromocyclization of tryptamines/tryptophols to access hexahydropyrrolo[2,3-b]indoles/tetrahydrofuroindolines in batch and flow. Chinese Chemical Letters, 2024, 35(7): 109280-. doi: 10.1016/j.cclet.2023.109280

    16. [16]

      Ke ZhangSheng ZuoPengyuan YouTong RuFen-Er Chen . Palladium-catalyzed stereoselective decarboxylative [4 + 2] cyclization of 2-methylidenetrimethylene carbonates with pyrrolidone-derived enones: Straightforward access to chiral tetrahydropyran-fused spiro-pyrrolidine-2,3-diones. Chinese Chemical Letters, 2024, 35(6): 109157-. doi: 10.1016/j.cclet.2023.109157

    17. [17]

      Shengwen GuanZhaotong WeiNingxu HanYude WeiBin XuMing WangJunjuan Shi . Construction of metallo-complexes with 2,2′:6′,2″-terpyridine substituted triphenylamine in different modified positions and their photophysical properties. Chinese Chemical Letters, 2024, 35(7): 109348-. doi: 10.1016/j.cclet.2023.109348

    18. [18]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    19. [19]

      Chunhua MaMengjiao LiuSiyu OuyangZhenwei CuiJingjing BiYuqin JiangZhiguo Zhang . Metal-free construction of diverse 1,2,4-triazolo[1,5-a]pyridines on water. Chinese Chemical Letters, 2025, 36(1): 109755-. doi: 10.1016/j.cclet.2024.109755

    20. [20]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

Metrics
  • PDF Downloads(0)
  • Abstract views(649)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return