Citation:
Qing-Shan Du, Yan-Xia Shi, Peng-Fei Li, Zhen-Jiang Zhao, Wei-Ping Zhu, Xu-Hong Qian, Bao-Ju Li, Yu-Fang Xu. Novel plant activators with thieno[2,3-d]-1,2,3-thiadiazole-6-carboxylate scaffold: Synthesis and bioactivity[J]. Chinese Chemical Letters,
;2013, 24(11): 967-969.
-
The 1,2,3-thiadiazole-carboxylate moiety was reported to be an important pharmacophore of plant activators. In this study, a series of novel plant activators based on thieno[2,3-d]-1,2,3-thiadiazole-6-carboxylate were designed and synthesized and their biological activity as plant activators was studied. The structures of the novel compounds were identified by 1H NMR, 19F NMR and HRMS. The in vivo bioassay showed that these novel compounds had good efficacy against seven plant diseases. Especially, compounds 1a and 1c were more potent than the commercialized plant activator BTH. Almost no fungicidal activity was observed for the active compounds in the in vivo assay, which matched the requirements as plant activators.
-
-
-
[1]
[1] L. Bos, Crop losses caused by viruses, Crop Prot. 1 (1982) 263-282.
-
[2]
[2] G. Loake, M. Grant, Salicylic acid in plant defense-the players and protagonists, Curr. Opin. Plant Biol. 10 (2007) 466-472.
-
[3]
[3] J.G. Turner, C. Ellis, A. Devoto, The jasmonate signal pathway, Plant Cell Online 14 (2002) S153-S164.
-
[4]
[4] S.W. Park, E. Kaimoyo, D. Kumar, S. Mosher, D.F. Klessig, Methyl salicylate is a critical mobile signal for plant systemic acquired resistance, Science 318 (2007) 113-116.
-
[5]
[5] J.A. Ryals, U.H. Neuenschwander, M.G. Willits, et al., Systemic acquired resistance, Plant Cell Online 8 (1996) 1809-1819.
-
[6]
[6] I.T. Baldwin, C.A. Preston, The eco-physiological complexity of plant responses to insect herbivores, Planta 208 (1999) 137-145.
-
[7]
[7] W. Kunz, R. Schurter, T. Maetzke, The chemistry of benzothiadiazole plant activators, Pestic. Sci. 50 (1997) 275-282.
-
[8]
[8] L. Sticher, B. MauchMani, J.P. Metraux, Systemic acquired resistance, Annu. Rev. Phytopathol. 35 (1997) 235-270.
-
[9]
[9] K.A. Lawton, L. Friedrich, M. Hunt, et al., Benzothiadiazole induces disease resistance in arabidopsis by activation of the systemic acquired resistance signal transduction pathway, Plant J. 10 (1996) 71-82.
-
[10]
[10] J. GoÉlach, S. Volrath, G. Knauf-Beiter, et al., Benzothiadiazole, a novel class of inducers of systemic acquired resistance, activates gene expression and disease resistance in wheat, Plant Cell Online 8 (1996) 629-643.
-
[11]
[11] N. Benhamou, R.R. Belanger, Benzothiadiazole-mediated induced resistance to fusarium oxysporum f. sp. radicis-lycopersici in tomato, Plant Physiol. 118 (1998) 1203-1212.
-
[12]
[12] N. Benhamou, R.R. Belanger, Induction of systemic resistance to pythium damping-off in cucumber plants by benzothiadiazole: ultrastructure and cytochemistry of the host response, Plant J. 14 (1998) 13-21.
-
[13]
[13] K.A. Ford, J.E. Casida, D. Chandran, et al., Neonicotinoid insecticides induce salicylate-associated plant defense responses, Proc. Natl. Acad. Sci. U.S.A. 107 (2010) 17527-17532.
-
[14]
[14] M. Yasuda, H. Nakashita, S. Yoshida, Tiadinil, a novel class of activator of systemic acquired resistance, induces defense gene expression and disease resistance in tobacco, J. Pestic. Sci. 29 (2004) 46-49.
-
[15]
[15] Z.J. Fan, Z.G. Shi, H.K. Zhang, et al., Synthesis and biological activity evaluation of 1,2,3-thiadiazole derivatives as potential elicitors with highly systemic acquired resistance, J. Agric. Food Chem. 57 (2009) 4279-4286.
-
[16]
[16] M. Ogawa, A. Kadowaki, T. Yamada, O. Kadooka, Applied development of a novel fungicide Isotianil, Sumitomo Kagaku (Osaka, Japan) 1 (2011) 4-17.
-
[17]
[17] C.M.J. Pieterse, A. Leon-Reyes, S. Van der Ent, S.C.M. Van Wees, Networking by small-molecule hormones in plant immunity, Nat. Chem. Biol. 5 (2009) 308-316.
-
[18]
[18] M. Iwata, Probenazole-a plant defence activator, Pestic. Outlook 12 (2001) 28-31.
-
[19]
[19] M. Nishioka, H. Nakashita, H. Suzuki, et al., Induction of resistance against rice blast disease by a novel class of plant activator, pyrazolecarboxylic acid derivatives, J. Pestic. Sci. 28 (2003) 416-421.
-
[20]
[20] F. Gozzo, Systemic acquired resistance in crop protection: from nature to a chemical approach, J. Agric. Food Chem. 51 (2003) 4487-4503.
-
[21]
[21] M. Yasuda, M. Kusajima, M. Nakajima, et al., Thiadiazole carboxylic acid moiety of tiadinil, SV-03, induces systemic acquired resistance in tobacco without salicylic acid accumulation, J. Pestic. Sci. 31 (2006) 329-334.
-
[22]
[22] Y.F. Xu, Z.J. Zhao, X.H. Qian, et al., Novel, unnatural benzo-1,2,3-thiadiazole-7-carboxylate elicitors of taxoid biosynthesis, J. Agric. Food Chem. 54 (2006) 8793-8798.
-
[23]
[23] Q.S. Du, W.P. Zhu, Z.J. Zhao, X.H. Qian, Y.F. Xu, Novel benzo-1,2,3-thiadiazole-7-carboxylate derivatives as plant activators and the development of their agricultural applications, J. Agric. Food Chem. 60 (2012) 346-353.
-
[24]
[24] P. Stanetty, M. Kremslehner, H. Vollenkle, A new type of plant activator: synthesis of thieno[2,3-d][1,2,3]thiadiazole-6-carboxylic acid derivatives via Hurd-Mori cyclization, J. Chem. Soc. Perkin Trans. 1 (1998) 853-856.
-
[25]
[25] P. Stanetty, E. Gorner, M.D. Mihovilovic, An improved synthetic approach to thieno[2,3-d]-1,2,3-thiadiazole-carboxylates via diazotization of aminothiophene derivatives, J. Heterocycl. Chem. 36 (1999) 761-765.
-
[26]
[26] H. Kessmann, T. Staub, J. Ligon, M. Oostendorp, J. Ryals, Activation of systemic acquired disease resistance in plants, Eur. J. Plant Pathol. 100 (1994) 359-369.
-
[1]
-
-
-
[1]
Bairu Meng , Zongji Zhuo , Han Yu , Sining Tao , Zixuan Chen , Erik De Clercq , Christophe Pannecouque , Dongwei Kang , Peng Zhan , Xinyong Liu . Design, synthesis, and biological evaluation of benzo[4,5]thieno[2,3-d]pyrimidine derivatives as novel HIV-1 NNRTIs. Chinese Chemical Letters, 2024, 35(6): 108827-. doi: 10.1016/j.cclet.2023.108827
-
[2]
Liping Zhao , Xixi Guo , Zhimeng Zhang , Xi Lu , Qingxuan Zeng , Tianyun Fan , Xintong Zhang , Fenbei Chen , Mengyi Xu , Min Yuan , Zhenjun Li , Jiandong Jiang , Jing Pang , Xuefu You , Yanxiang Wang , Danqing Song . Novel berberine derivatives as adjuvants in the battle against Acinetobacter baumannii: A promising strategy for combating multi-drug resistance. Chinese Chemical Letters, 2024, 35(10): 109506-. doi: 10.1016/j.cclet.2024.109506
-
[3]
Deli Chen , Jiawen Li , Xudong Xu , Zhaocui Sun , Yun Yang , Minghui Xu , Hanqiao Liang , Junshan Yang , Hui Meng , Guoxu Ma , Jianhe Wei . Plant-microbial interactions inspired the discovery of novel sesquiterpenoid dimeric skeletons of hidden natural products from Hibiscus tiliaceus. Chinese Chemical Letters, 2024, 35(10): 109451-. doi: 10.1016/j.cclet.2023.109451
-
[4]
Hai-Yang Song , Jun Jiang , Yu-Hang Song , Min-Hang Zhou , Chao Wu , Xiang Chen , Wei-Min He . Supporting-electrolyte-free electrochemical [2 + 2 + 1] annulation of benzo[d]isothiazole 1,1-dioxides, N-arylglycines and paraformaldehyde. Chinese Chemical Letters, 2024, 35(6): 109246-. doi: 10.1016/j.cclet.2023.109246
-
[5]
Jinge Zhu , Ailing Tang , Leyi Tang , Peiqing Cong , Chao Li , Qing Guo , Zongtao Wang , Xiaoru Xu , Jiang Wu , Erjun Zhou . Chlorination of benzyl group on the terminal unit of A2-A1-D-A1-A2 type nonfullerene acceptor for high-voltage organic solar cells. Chinese Chemical Letters, 2025, 36(1): 110233-. doi: 10.1016/j.cclet.2024.110233
-
[6]
Yong-Dan Zhao , Yidan Wang , Rongrong Wang , Lina Chen , Hengtong Zuo , Xi Wang , Jihong Qiang , Geng Wang , Qingxia Li , Canqi Ping , Shuqiu Zhang , Hao Wang . Reversing artemisinin resistance by leveraging thermo-responsive nanoplatform to downregulating GSH. Chinese Chemical Letters, 2024, 35(6): 108929-. doi: 10.1016/j.cclet.2023.108929
-
[7]
Yixuan Wang , Jiexin Li , Zhihao Shang , Chengcheng Feng , Jianmin Gu , Maosheng Ye , Ran Zhao , Danna Liu , Jingxin Meng , Shutao Wang . Wettability-driven synergistic resistance of scale and oil on robust superamphiphobic coating. Chinese Chemical Letters, 2024, 35(7): 109623-. doi: 10.1016/j.cclet.2024.109623
-
[8]
Yuxin Li , Chengbin Liu , Qiuju Li , Shun Mao . Fluorescence analysis of antibiotics and antibiotic-resistance genes in the environment: A mini review. Chinese Chemical Letters, 2024, 35(10): 109541-. doi: 10.1016/j.cclet.2024.109541
-
[9]
Shaoqing Du , Xinyong Liu , Xueping Hu , Peng Zhan . Targeting novel sites represents an effective strategy for combating drug resistance. Chinese Chemical Letters, 2025, 36(1): 110378-. doi: 10.1016/j.cclet.2024.110378
-
[10]
Xiaofang Luo , Ye Wu , Xiaokun Zhang , Min Tang , Feiye Ju , Zuodong Qin , Gregory J Duns , Wei-Dong Zhang , Jiang-Jiang Qin , Xin Luan . Peptide-based strategies for overcoming multidrug-resistance in cancer therapy. Chinese Chemical Letters, 2025, 36(1): 109724-. doi: 10.1016/j.cclet.2024.109724
-
[11]
Yulong Shi , Fenbei Chen , Mengyuan Wu , Xin Zhang , Runze Meng , Kun Wang , Yan Wang , Yuheng Mei , Qionglu Duan , Yinghong Li , Rongmei Gao , Yuhuan Li , Hongbin Deng , Jiandong Jiang , Yanxiang Wang , Danqing Song . Chemical construction and anti-HCoV-OC43 evaluation of novel 10,12-disubstituted aloperine derivatives as dual cofactor inhibitors of TMPRSS2 and SR-B1. Chinese Chemical Letters, 2024, 35(5): 108792-. doi: 10.1016/j.cclet.2023.108792
-
[12]
Junjun Huang , Ran Chen , Yajian Huang , Hang Zhang , Anran Zheng , Qing Xiao , Dan Wu , Ruxia Duan , Zhi Zhou , Fei He , Wei Yi . Discovery of an enantiopure N-[2-hydroxy-3-phenyl piperazine propyl]-aromatic carboxamide derivative as highly selective α1D/1A-adrenoceptor antagonist and homology modelling. Chinese Chemical Letters, 2024, 35(11): 109594-. doi: 10.1016/j.cclet.2024.109594
-
[13]
Weichen WANG , Chunhua GONG , Junyong ZHANG , Yanfeng BI , Hao XU , Jingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415
-
[14]
Liyong Ding , Zhenhua Pan , Qian Wang . 2D photocatalysts for hydrogen peroxide synthesis. Chinese Chemical Letters, 2024, 35(12): 110125-. doi: 10.1016/j.cclet.2024.110125
-
[15]
Xiao Xiao , Biao Chen , Jia-Wei Li , Jun-Bo Zheng , Xu Wang , Hang Zhao , Fen-Er Chen . Nitrite-catalyzed economic and sustainable bromocyclization of tryptamines/tryptophols to access hexahydropyrrolo[2,3-b]indoles/tetrahydrofuroindolines in batch and flow. Chinese Chemical Letters, 2024, 35(7): 109280-. doi: 10.1016/j.cclet.2023.109280
-
[16]
Ke Zhang , Sheng Zuo , Pengyuan You , Tong Ru , Fen-Er Chen . Palladium-catalyzed stereoselective decarboxylative [4 + 2] cyclization of 2-methylidenetrimethylene carbonates with pyrrolidone-derived enones: Straightforward access to chiral tetrahydropyran-fused spiro-pyrrolidine-2,3-diones. Chinese Chemical Letters, 2024, 35(6): 109157-. doi: 10.1016/j.cclet.2023.109157
-
[17]
Shengwen Guan , Zhaotong Wei , Ningxu Han , Yude Wei , Bin Xu , Ming Wang , Junjuan Shi . Construction of metallo-complexes with 2,2′:6′,2″-terpyridine substituted triphenylamine in different modified positions and their photophysical properties. Chinese Chemical Letters, 2024, 35(7): 109348-. doi: 10.1016/j.cclet.2023.109348
-
[18]
Haojie Duan , Hejingying Niu , Lina Gan , Xiaodi Duan , Shuo Shi , Li Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038
-
[19]
Chunhua Ma , Mengjiao Liu , Siyu Ouyang , Zhenwei Cui , Jingjing Bi , Yuqin Jiang , Zhiguo Zhang . Metal-free construction of diverse 1,2,4-triazolo[1,5-a]pyridines on water. Chinese Chemical Letters, 2025, 36(1): 109755-. doi: 10.1016/j.cclet.2024.109755
-
[20]
Qiang ZHAO , Zhinan GUO , Shuying LI , Junli WANG , Zuopeng LI , Zhifang JIA , Kewei WANG , Yong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(648)
- HTML views(1)