Citation: Peng Guo, Jun-Hai Huang, Qing-Chun Huang, Xu-Hong Qian. Synthesis of novel 1,3-oxazole derivatives with insect growthinhibiting activities[J]. Chinese Chemical Letters, ;2013, 24(11): 957-961. shu

Synthesis of novel 1,3-oxazole derivatives with insect growthinhibiting activities

  • Corresponding author: Xu-Hong Qian, 
  • Received Date: 19 May 2013
    Available Online: 13 June 2013

  • Straightforward and direct synthesis of 2-substituted-5-oxazolecarbaldehydes was achieved by treating propargylamides with mercury(Ⅱ) perchlorate as catalyst and ammonium cerium(Ⅳ) nitrate as oxidant agent through intramolecular cyclization. These structurally interesting outcomes benefit to synthesize 2,5-disubstituted-1,3-oxazoles with armyworm growth regulating activities.
  • 加载中
    1. [1]

      [1] J.R. Lewis, Muscarine, oxazole, imidazole, thiazole, and peptide alkaloids, and other miscellaneous alkaloids, Nat. Prod. Rep. 12 (1995) 135-163.

    2. [2]

      [2] G. Pattenden, Synthetic studies with natural oxazoles and thiazoles, J. Heterocycl. Chem. 29 (1992) 607-618.

    3. [3]

      [3] S. Carmeli, R.E. Moore, G.M.L. Patterson, T.H. Corbett, F.A. Valeriote, Tantazoles, unusual cytotoxic alkaloids from the blue-green alga Scytonema mirabile, J. Am. Chem. Soc. 112 (1990) 8195-8197.

    4. [4]

      [4] Y. Kato, N. Fusetani, S. Matsunaga, et al., Bioactive marine metabolites. Part 16. Calyculin A. A novel antitumor metabolite from the marine sponge Discodermia calyx, J. Am. Chem. Soc. 108 (1986) 2780-2781.

    5. [5]

      [5] B.A. Anderson, L.M. Becke, R.N. Booher, et al., Application of palladium(0)-catalyzed processes to the synthesis of oxazole-containing partial ergot alkaloids, J. Org. Chem. 62 (1997) 8634-8639.

    6. [6]

      [6] D.C. Palmer, S. Venkatraman, Synthesis and reactions of oxazoles, in: D.C. Palmer (Ed.), Oxazoles: Synthesis, Reactions, and Spectroscopy, John Wiley & Sons, Hoboken, NJ, USA, 2003, pp. 1-390.

    7. [7]

      [7] E.M. Beccalli, E. Borsini, G. Broggini, G. Palmisano, S. Sottocornola, Intramolecular Pd(Ⅱ)-catalyzed cyclization of propargylamides: straightforward synthesis of 5-oxazolecarbaldehydes, J. Org. Chem. 73 (2008) 4746-4749.

    8. [8]

      [8] A. Bacchi, M. Costa, B. Gabriele, G. Pelizzi, G. Salerno, Efficient and general synthesis of 5-(Alkoxycarbonyl)methylene-3-oxazolines by palladium-catalyzed oxidative carbonylation of prop-2-ynylamides, J. Org. Chem. 67 (2002) 4450-4457.

    9. [9]

      [9] A. Arcadi, S. Cacchi, L. Cascia, G. Fabrizi, F. Marinelli, Preparation of 2,5-disubstituted oxazoles from N-propargylamides, Org. Lett. 3 (2001) 2501-2504.

    10. [10]

      [10] J.P. Weyrauch, A.S.K. Hashmi, A. Schuster, et al., Cyclization of propargylic amides: mild access to oxazole derivatives, Chem.-Eur. J. 16 (2010) 956-963.

    11. [11]

      [11] D. Aguilar, M. Contel, R. Navarro, T. Soler, E.P. Urriolabeitia, Gold(Ⅲ) iminophosphorane complexes as catalysts in C-C and C-O bond formations, J. Organomet. Chem. 694 (2009) 486-493.

    12. [12]

      [12] A.S.K. Hashmi, J.P. Weyrauch, W. Frey, J.W. Bats, Gold catalysis: mild conditions for the synthesis of oxazoles from N-propargylcarboxamides and mechanistic aspects, Org. Lett. 6 (2004) 4391-4394.

    13. [13]

      [13] A.S.K. Hashmi, M.C. Blanco Jaimes, A.M. Schuster, F. Rominger, From propargylic amides to functionalized oxazoles: domino gold catalysis/oxidation by dioxygen, J. Org. Chem. 77 (2012) 6394-6408.

    14. [14]

      [14] J. Huang, 1,8-Naphthalimide and rhodamine based probes for cations: design, syntheses and property, East China University of Science and Technology, 2009 (PhD dissertation).

    15. [15]

      [15] W. Xu, S. Yang, P. Bhadury, et al., Synthesis and bioactivity of novel sulfone derivatives containing 2,4-dichlorophenyl substituted 1,3,4-oxadiazole/thiadiazole moiety as chitinase inhibitors, Pestic. Biochem. Phys. 101 (2011) 6-15.

    16. [16]

      [16] J. Suzuki, T. Ishida, Y. Kikuchi, et al., Synthesis and activity of novel acaricidal/insecticidal 2,4-diphenyl-1,3-oxazolines, J. Pestic. Sci. 27 (2002) 1-8.

    17. [17]

      [17] W. Shi, X. Qian, R. Zhang, G. Song, Synthesis and quantitative structure-activity relationships of new 2,5-disubstituted-1,3,4-oxadiazoles, J. Agric. Food Chem. 49 (2001) 124-130.

    18. [18]

      [18] Y. Liu, Z. Cui, B. Liu, et al., Design, synthesis, and herbicidal activities of novel 2-cyanoacrylates containing isoxazole moieties, J. Agric. Food Chem. 58 (2010) 2685-2689.

    19. [19]

      [19] F. Grundmann, V. Dill1, A. Dowling, et al., Identification and isolation of insecticidal oxazoles from Pseudomonas spp, Beilstein, J. Org. Chem. 8 (2012) 749-752.

    20. [20]

      [20] A.D. Gutman, 1,3-Oxazole phosphates and phosphonates as insecticides and miticides, U.S. Patent 4,137,308 (1979).

    21. [21]

      [21] R. Sun, Y. Li, L. Xiong, Y. Liu, Q. Wang, Design, synthesis, and insecticidal evaluation of new benzoylureas containing isoxazoline and isoxazole group, J. Agric. Food Chem. 59 (2011) 4851-4859.

    22. [22]

      [22] L. Syper, Partial oxidation of aliphatic side chains with cerium (Ⅳ), Tetrahedron Lett. 7 (1966) 4493-4498.

  • 加载中
    1. [1]

      Ke Wang Jia Wu Shuyi Zheng Shibin Yin . NiCo Alloy Nanoparticles Anchored on Mesoporous Mo2N Nanosheets as Efficient Catalysts for 5-Hydroxymethylfurfural Electrooxidation and Hydrogen Generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100104-100104. doi: 10.1016/j.cjsc.2023.100104

    2. [2]

      Jinli Chen Shouquan Feng Tianqi Yu Yongjin Zou Huan Wen Shibin Yin . Modulating Metal-Support Interaction Between Pt3Ni and Unsaturated WOx to Selectively Regulate the ORR Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100168-100168. doi: 10.1016/j.cjsc.2023.100168

    3. [3]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    4. [4]

      Huyi Yu Renshu Huang Qian Liu Xingfa Chen Tianqi Yu Haiquan Wang Xincheng Liang Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253

    5. [5]

      Yatian DengDao WangJinglan ChengYunkun ZhaoZongbao LiChunyan ZangJian LiLichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141

    6. [6]

      Gang HuChun WangQinqin WangMingyuan ZhuLihua Kang . The controlled oxidation states of the H4PMo11VO40 catalyst induced by plasma for the selective oxidation of methacrolein. Chinese Chemical Letters, 2025, 36(2): 110298-. doi: 10.1016/j.cclet.2024.110298

    7. [7]

      Tong LiLeping PanYan ZhangJihu SuKai LiKuiliang LiHu ChenQi SunZhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897

    8. [8]

      Guanxiong YuChengkai XuHuaqiang JuJie RenGuangpeng WuChengjian ZhangXinghong ZhangZhen XuWeipu ZhuHao-Cheng YangHaoke ZhangJianzhao LiuZhengwei MaoYang ZhuQiao JinKefeng RenZiliang WuHanying Li . Key progresses of MOE key laboratory of macromolecular synthesis and functionalization in 2023. Chinese Chemical Letters, 2024, 35(11): 109893-. doi: 10.1016/j.cclet.2024.109893

    9. [9]

      Zhikang WuGuoyong DaiQi LiZheyu WeiShi RuJianda LiHongli JiaDejin ZangMirjana ČolovićYongge Wei . POV-based molecular catalysts for highly efficient esterification of alcohols with aldehydes as acylating agents. Chinese Chemical Letters, 2024, 35(8): 109061-. doi: 10.1016/j.cclet.2023.109061

    10. [10]

      Yulong LiuHaoran LuTong YangPeng ChengXu HanWenyan Liang . Catalytic applications of amorphous alloys in wastewater treatment: A review on mechanisms, recent trends, challenges and future directions. Chinese Chemical Letters, 2024, 35(10): 109492-. doi: 10.1016/j.cclet.2024.109492

    11. [11]

      Yufei LiuLiang XiongBingyang GaoQingyun ShiYing WangZhiya HanZhenhua ZhangZhaowei MaLimin WangYong Cheng . MOF-derived Cu based materials as highly active catalysts for improving hydrogen storage performance of Mg-Ni-La-Y alloys. Chinese Chemical Letters, 2024, 35(12): 109932-. doi: 10.1016/j.cclet.2024.109932

    12. [12]

      Meng WangYan ZhangYunbo YuWenpo ShanHong He . High-temperature calcination dramatically promotes the activity of Cs/Co/Ce-Sn catalyst for soot oxidation. Chinese Chemical Letters, 2025, 36(1): 109928-. doi: 10.1016/j.cclet.2024.109928

    13. [13]

      Ruonan YangJiajia LiDongmei ZhangXiuqi ZhangXia LiHan YuZhanhu GuoChuanxin HouGang LianFeng Dang . Grain-refining Co0.85Se@CNT cathode catalyst with promoted Li2O2 growth kinetics for lithium-oxygen batteries. Chinese Chemical Letters, 2024, 35(12): 109595-. doi: 10.1016/j.cclet.2024.109595

    14. [14]

      Mengxiang ZhuTao DingYunzhang LiYuanjie PengRuiping LiuQuan ZouLeilei YangShenglei SunPin ZhouGuosheng ShiDongting Yue . Graphene controlled solid-state growth of oxygen vacancies riched V2O5 catalyst to highly activate Fenton-like reaction. Chinese Chemical Letters, 2024, 35(12): 109833-. doi: 10.1016/j.cclet.2024.109833

    15. [15]

      Xiaoning LiQuanyu ShiMeng LiNingxin SongYumeng XiaoHuining XiaoTony D. JamesLei Feng . Functionalization of cellulose carbon dots with different elements (N, B and S) for mercury ion detection and anti-counterfeit applications. Chinese Chemical Letters, 2024, 35(7): 109021-. doi: 10.1016/j.cclet.2023.109021

    16. [16]

      Xudong ZhaoYuxuan WangXinxin GaoXinli GaoMeihua WangHongliang HuangBaosheng Liu . Anchoring thiol-rich traps in 1D channel wall of metal-organic framework for efficient removal of mercury ions. Chinese Chemical Letters, 2025, 36(2): 109901-. doi: 10.1016/j.cclet.2024.109901

    17. [17]

      Hong Yin Zhipeng Yu . Hexavalent iridium catalyst enhances efficiency of hydrogen production. Chinese Journal of Structural Chemistry, 2025, 44(1): 100382-100382. doi: 10.1016/j.cjsc.2024.100382

    18. [18]

      Qijun Tang Wenguang Tu Yong Zhou Zhigang Zou . High efficiency and selectivity catalyst for photocatalytic oxidative coupling of methane. Chinese Journal of Structural Chemistry, 2023, 42(12): 100170-100170. doi: 10.1016/j.cjsc.2023.100170

    19. [19]

      Zimo Peng Quan Zhang Gaocan Qi Hao Zhang Qian Liu Guangzhi Hu Jun Luo Xijun Liu . Nanostructured Pt@RuOx catalyst for boosting overall acidic seawater splitting. Chinese Journal of Structural Chemistry, 2024, 43(1): 100191-100191. doi: 10.1016/j.cjsc.2024.100191

    20. [20]

      Shuang LiJiayu SunGuocheng LiuShuo ZhangZhong ZhangXiuli Wang . A new Keggin-type polyoxometallate-based bifunctional catalyst for trace detection and pH-universal photodegradation of phenol. Chinese Chemical Letters, 2024, 35(8): 109148-. doi: 10.1016/j.cclet.2023.109148

Metrics
  • PDF Downloads(0)
  • Abstract views(703)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return