Citation: Li-Hua Wang, Zhi-Jun Zhang, Heng-Yi Zhang, Hai-Lang Wu, Yu Liu. A twin-axial[5]pseudorotaxane based on cucurbit[8]uril and a-cyclodextrin[J]. Chinese Chemical Letters, ;2013, 24(11): 949-952. shu

A twin-axial[5]pseudorotaxane based on cucurbit[8]uril and a-cyclodextrin

  • Corresponding author: Yu Liu, 
  • Received Date: 17 May 2013
    Available Online: 14 June 2013

  • A twin-axial hetero[5]pseudorotaxane was constructed based on 1-hexyl-4,40-bipyridinium guest 1 and cucurbit[8]uril (CB[8]) and a-cyclodextrin (a-CD). In its structure, CB[8] included two bipyridinium units to realize the twin-axial mode, and the hexyl chain was threaded into the cavity of a-CD. The [5]pseudorotaxane contains two types of macrocyclic hosts while the single axial and twin axial modes co-exist in its structure. The transformation of [5]pseudorotaxane could be realized by the addition of acid and 2,6-dihydroxynaphthalene (HN).
  • 加载中
    1. [1]

      [1] (a) Z. Wang, D.S. Guo, J. Zhang, et al., Electro-responsive binary hydrogels based on calixarene and viologens, Acta Chim. Sin. 70 (2012) 1709-1715;

    2. [2]

      (b) S.S. Zhai, Y. Chen, Y. Liu, Selective binding of bile salts by b-cyclodextrin derivatives with appended quinolyl arms, Chin. Chem. Lett. 24 (2013) 442-446;

    3. [3]

      (c) C. Yang, Recent progress in supramolecular chiral photochemistry, Chin. Chem. Lett. 24 (2013) 437-441;

    4. [4]

      (d) Z.J. Zhang, H. Wang, H.Y. Zhang, et al., Selectively fluorescent sensing behavior of phenylaza-15-crown-5-triazolyl coumarin for Hg2+ and Fe3+ in alcohol and aqueous media respectively, Chin. J. Chem. 31 (2013) 598-602.

    5. [5]

      [2] D.S. Guo, J. Zhang, Y. Liu, Calixarene-based supramolecular polymerization in solution, Chem. Soc. Rev. 41 (2012) 5907-5921.

    6. [6]

      [3] E.R. Kay, D.A. Leigh, F. Zerbetto, Synthetic molecular motors and mechanical machines, Angew. Chem. Int. Ed. 46 (2007) 72-191.

    7. [7]

      [4] D.H. Qu, H. Tian, Novel and efficient templates for assembly of rotaxanes and catenanes, Chem. Sci. 2 (2011) 1011-1015.

    8. [8]

      [5] (a) Z.J. Zhang, H.Y. Zhang, Y. Liu, Artificialmolecular devices and machines based on 24-crown-8 macrocyclic compound, Chem. J. Chin. Univ. 32 (2011) 1913-1927;

    9. [9]

      (b) H. Wang, Z.J. Zhang, H.Y. Zhang, et al., Synthesis of a bistable [3]rotaxane and its pH-controlled intramolecular charge-transfer behavior, Chin. Chem. Lett. 24 (2013) 563-567.

    10. [10]

      [6] (a) Y.L. Sun, Y.W. Yang, D.X. Chen, et al., Mechanized silica nanoparticles based on pillar[5]arenes for on-command cargo release, Small 9 (2013), http://dx.doi.org/10.1002/smll.201300445;

    11. [11]

      (b) Y.L. Sun, B.J. Yang, S.X.A. Zhang, et al., Cucurbit[7]uril pseudorotaxane-based photoresponsive supramolecular nanovalve, Chem. Eur. J. 18 (2012) 9212-9216;

    12. [12]

      (c) Y.W. Yang, Towards biocompatible nanovalves based on mesoporous silica nanoparticles, Med. Chem. Commun. 2 (2011) 1033-1049;

    13. [13]

      (d) H. Li, Y.W. Yang, Gold nanoparticles functionalized with supramolecular macrocycles, Chin. Chem. Lett. 24 (2013) 545-552;

    14. [14]

      (e) Y.L. Sun, Y.W. Yang, W. Wu, et al., Supramolecular nanovalve systems based on macrocyclic synthetic receptors, Chem. J. Chin. Univ. 33 (2012) 1635-1642;

    15. [15]

      (f) P. Liu, X.G. Shao, W.S. Cai, Application of pesudorotaxanes/rotaxanes in drug carriers, Prog. Chem. 25 (2013) 692-697.

    16. [16]

      [7] C. Li, X. Shu, J. Li, et al., Selective and effective binding of pillar[5,6]arenes toward secondary ammonium salts with a weakly coordinating counteranion, Org. Lett. 14 (2012) 4126-4129.

    17. [17]

      [8] Z.J. Zhang, H.Y. Zhang, H. Wang, et al., A twin-axial hetero[7]rotaxane, Angew. Chem. Int. Ed. 50 (2011) 10834-10838.

    18. [18]

      [9] Z.J. Zhang, Y. Liu, Construction and function of interpenetrated molecules based on the positively charged axle components, Synlett 23 (2012) 1733-1750.

    19. [19]

      [10] Y. Liu, X.Y. Li, H.Y. Zhang, et al., Cyclodextrin-driven movement of cucurbit[7]uril, J. Org. Chem. 72 (2007) 3640-3645.

    20. [20]

      [11] J. Lagona, P. Mukhopadhyay, S. Chakrabarti, et al., The cucurbit[n]uril family, Angew. Chem. Int. Ed. 44 (2005) 4844-4870.

    21. [21]

      [12] S. Andersson, D.P. Zou, R. Zhang, et al., Selective positioning of CB[8] on two linked viologens and electrochemically driven movement of the host compound, Eur. J. Org. Chem. (2009) 1163-1172.

    22. [22]

      [13] T. Ooya, D. Inoue, H.S. Choi, et al., pH-Responsive movement of cucurbit[7]uril in a diblock polypseudorotaxane containing dimethyl b-cyclodextrin and cucurbit[7]uril, Org. Lett. 8 (2006) 3159-3162.

    23. [23]

      [14] C. Yang, Y.H. Ko, N. Selvapalam, et al., Dynamic switching between single-and double-axial rotaxanes manipulated by charge and bulkiness of axle termini, Org. Lett. 9 (2007) 4789-4792.

    24. [24]

      [15] Z.J. Ding, H.Y. Zhang, L.H. Wang, et al., A heterowheel [3]pseudorotaxane by integrating b-cyclodextrin and cucurbit[8]uril inclusion complexes, Org. Lett. 13 (2011) 856-859.

    25. [25]

      [16] Y. Chen, Y. Liu, Cyclodextrin-based bioactive nanosupramolecules, Chem. Soc. Rev. 39 (2010) 495-505.

    26. [26]

      [17] Y.H. Ko, E. Kim, I. Hwang, Supramolecular assemblies built with host-stabilized charge-transfer interactions, Chem. Commun. (2007) 1305-1315.

    27. [27]

      [18] U. Rauwald, O.A. Scherman, Supramolecular block copolymers with cucurbit[8]uril in water, Angew. Chem. Int. Ed. 47 (2008) 3950-3953.

    28. [28]

      [19] S. Deroo, U. Rauwald, C.V. Robinson, et al., Discrete, multi-component complexes with cucurbit[8]uril in the gas-phase, Chem. Commun. (2009) 644-646.

    29. [29]

      [20] J.M. Zayed, F. Biedermann, U. Rauwald, et al., Probing cucurbit[8]uril-mediated supramolecular block copolymer assembly in water using diffusion NMR, Polym. Chem. 1 (2010) 1434-1436.

    30. [30]

      [21] R.J. Coulston, S.T. Jones, T.C. Lee, et al., Supramolecular gold nanoparticle-polymer composites formed in water with cucurbit[8]uril, Chem. Commun. 47 (2011) 164-166.

    31. [31]

      [22] F. Tian, N. Cheng, N. Nouvel, et al., Site-selective immobilization of colloids on Au substrates via a noncovalent supramolecular "handcuff", Langmuir 26 (2010) 5323-5328.

    32. [32]

      [23] E.A. Appel, F. Biedermann, U. Rauwald, et al., Supramolecular cross-Linked networks via host-guest complexation with cucurbit[8]uril, J. Am. Chem. Soc. 132 (2010) 14251-14260.

    33. [33]

      [24] F. Biedermann, U. Rauwald, J.M. Zayed, et al., A supramolecular route for reversible protein-polymer conjugation, Chem. Sci. 2 (2011) 279-286.

    34. [34]

      [25] M.F. Pepitone, G.G. Jernigan, J.S. Melinger, et al., Synthesis and characterization of donor-acceptor chromophores for unidirectional electron transfer, Org. Lett. 9 (2007) 801-804.

    35. [35]

      [26] Z.J. Zhang, Y.M. Zhang, Y. Liu, Controlled molecular self-assembly behaviors between cucurbituril and bispyridinium derivatives, J. Org. Chem. 76 (2011) 4682-4685.

    36. [36]

      [27] Z.J. Zhang, H.Y. Zhang, L. Chen, et al., Interconversion between [5]pseudorotaxane and pseudorotaxane by pasting/detaching two axle molecules, J. Org. Chem. 76 (2011) 8270-8276.

  • 加载中
    1. [1]

      Qian RenXue DaiRan CenYang LuoMingyang LiZiyun ZhangQinghong BaiZhu TaoXin Xiao . A cucurbit[8]uril-based supramolecular phosphorescent assembly: Cell imaging and sensing of amino acids in aqueous solution. Chinese Chemical Letters, 2024, 35(12): 110022-. doi: 10.1016/j.cclet.2024.110022

    2. [2]

      Sifan DuYuan WangFulin WangTianyu WangLi ZhangMinghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256

    3. [3]

      Guoxing LiuYixin LiChangming TianYongmei XiaoLijie LiuZhanqi CaoSong JiangXin ZhengCaoyuan NiuYun-Lai RenLiangru YangXianfu ZhengYong Chen . Highly reversible photomodulated hydrosoluble stiff-stilbene supramolecular luminophor induced by cucurbituril. Chinese Chemical Letters, 2024, 35(8): 109403-. doi: 10.1016/j.cclet.2023.109403

    4. [4]

      Yuwen ZhuXiang DengYan WuBaode ShenLingyu HangYuye XueHailong Yuan . Formation mechanism of herpetrione self-assembled nanoparticles based on pH-driven method. Chinese Chemical Letters, 2025, 36(1): 109733-. doi: 10.1016/j.cclet.2024.109733

    5. [5]

      Jianqiu LiYi ZhangSongen LiuJie NiuRong ZhangYong ChenYu Liu . Cucurbit[8]uril-based non-covalent heterodimer realized NIR cell imaging through topological transformation from nanowire to nanorod. Chinese Chemical Letters, 2024, 35(10): 109645-. doi: 10.1016/j.cclet.2024.109645

    6. [6]

      Siwei WangWei-Lei ZhouYong Chen . Cucurbituril and cyclodextrin co-confinement-based multilevel assembly for single-molecule phosphorescence resonance energy transfer behavior. Chinese Chemical Letters, 2024, 35(12): 110261-. doi: 10.1016/j.cclet.2024.110261

    7. [7]

      Jingqi XinShupeng HanMeichen ZhengChenfeng XuZhongxi HuangBin WangChangmin YuFeifei AnYu Ren . A nitroreductase-responsive nanoprobe with homogeneous composition and high loading for preoperative non-invasive tumor imaging and intraoperative guidance. Chinese Chemical Letters, 2024, 35(7): 109165-. doi: 10.1016/j.cclet.2023.109165

    8. [8]

      Keyang LiYanan WangYatao XuGuohua ShiSixian WeiXue ZhangBaomei ZhangQiang JiaHuanhua XuLiangmin YuJun WuZhiyu He . Flash nanocomplexation (FNC): A new microvolume mixing method for nanomedicine formulation. Chinese Chemical Letters, 2024, 35(10): 109511-. doi: 10.1016/j.cclet.2024.109511

    9. [9]

      Xuanyu WangZhao GaoWei Tian . Supramolecular confinement effect enabling light-harvesting system for photocatalytic α-oxyamination reaction. Chinese Chemical Letters, 2024, 35(11): 109757-. doi: 10.1016/j.cclet.2024.109757

    10. [10]

      Xian YanHuawei XieGao WuFang-Xing Xiao . Boosted solar water oxidation steered by atomically precise alloy nanocluster. Chinese Chemical Letters, 2025, 36(1): 110279-. doi: 10.1016/j.cclet.2024.110279

    11. [11]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    12. [12]

      Cheng-Yan WuYi-Nan GaoZi-Han ZhangRui LiuQuan TangZhong-Lin Lu . Enhancing self-assembly efficiency of macrocyclic compound into nanotubes by introducing double peptide linkages. Chinese Chemical Letters, 2024, 35(11): 109649-. doi: 10.1016/j.cclet.2024.109649

    13. [13]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    14. [14]

      Zengchao GuoWeiwei LiuTengfei LiuJinpeng WangHui JiangXiaohui LiuYossi WeizmannXuemei Wang . Engineered exosome hybrid copper nanoscale antibiotics facilitate simultaneous self-assembly imaging and elimination of intracellular multidrug-resistant superbugs. Chinese Chemical Letters, 2024, 35(7): 109060-. doi: 10.1016/j.cclet.2023.109060

    15. [15]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    16. [16]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    17. [17]

      Changhui YuPeng ShangHuihui HuYuening ZhangXujin QinLinyu HanCaihe LiuXiaohan LiuMinghua LiuYuan GuoZhen Zhang . Evolution of template-assisted two-dimensional porphyrin chiral grating structure by directed self-assembly using chiral second harmonic generation microscopy. Chinese Chemical Letters, 2024, 35(10): 109805-. doi: 10.1016/j.cclet.2024.109805

    18. [18]

      Bing NiuHonggao HuangLiwei LuoLi ZhangJianbo Tan . Coating colloidal particles with a well-defined polymer layer by surface-initiated photoinduced polymerization-induced self-assembly and the subsequent seeded polymerization. Chinese Chemical Letters, 2025, 36(2): 110431-. doi: 10.1016/j.cclet.2024.110431

    19. [19]

      Yi ZhouWei ZhangRong FuJiaxin DongYuxuan LiuZihang SongHan HanKang Cai . Self-assembly of two pairs of homochiral M2L4 coordination capsules with varied confined space using Tröger's base ligands. Chinese Chemical Letters, 2025, 36(2): 109865-. doi: 10.1016/j.cclet.2024.109865

    20. [20]

      Zhen DaiLinzhi TanYeyu SuKerui ZhaoYushun TianYu LiuTao Liu . Site-specific incorporation of reduction-controlled guest amino acids into proteins for cucurbituril recognition. Chinese Chemical Letters, 2024, 35(5): 109121-. doi: 10.1016/j.cclet.2023.109121

Metrics
  • PDF Downloads(0)
  • Abstract views(748)
  • HTML views(14)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return