Citation: Ratchanok Pingaew, Supaluk Prachayasittikul, Somsak Ruchirawat, Virapong Prachayasittikul. Tungstophosphoric acid catalyzed synthesis of N-sulfonyl-1,2,3,4-tetrahydroisoquinoline analogs[J]. Chinese Chemical Letters, ;2013, 24(10): 941-944.
-
An operationally simple and eco-friendly protocol has been developed for the synthesis of N-sulfonyl-1,2,3,4-tetrahydroisoquinolines 3 using the modified Pictet-Spengler reaction of N-sulfonylphenylethylamines 1 and various aldehydes 2 in the presence of tungstophosphoric acid hydrate.
-
Keywords:
- Pictet-Spengler reaction,
- Isoquinoline,
- Heteropoly acid,
- Sulfonamide
-
-
[1]
[1] K.W. Bentley, The Isoquinoline Alkaloids, Harwood Academic Publishers, Amsterdam, 1998.
-
[2]
[2] J.D. Scott, R.M. Williams, Chemistry and biology of the tetrahydroisoquinoline antitumor antibiotics, Chem. Rev. 102 (2002) 1669-1730.
-
[3]
[3] P. Siengalewicz, U. Rinner, J. Mulzer, Recent progress in the total synthesis of naphthyridnomycin and lemonomycin tetrahydroisoquinoline antibiotics (TAAs), Chem. Soc. Rev. 37 (2008) 2676-2690.
-
[4]
[4] K. Iwasa, M. Moriyasu, Y. Tachibana, et al., Simple isoquinoline and benzylisoquinoline alkaloids as potential antimicrobial, antimalarial, cytotoxic, and anti-HIV agents, Bioorg. Med. Chem. 9 (2001) 2871-2884.
-
[5]
[5] E.D. Cox, J.M. Cook, The Pictet-Spengler condensation: a new direction for an old reaction, Chem. Rev. 95 (1995) 1797-1842.
-
[6]
[6] E.L. Larghi, M. Amongero, A.B.J. Bracca, T.S. Kaufman, The intermolecular Pictet-Spengler condensation with chiral carbonyl derivatives in the stereoselective syntheses of optically active isoquinoline and indole alkaloids, Arkivoc 12 (2005) 98-153.
-
[7]
[7] L.K. Lukanov, A.P. Venkov, N.M. Mollov, Application of the intramolecular aamidoalkylation reaction for the synthesis of 2-arylsulfonyl-1,2,3,4-tetrahydroisoquinolines, Synthesis (1987) 204-206.
-
[8]
[8] G.D. Cuny, Synthesis of (±)-aporphine utilizing Pictet-Spengler and intramolecular phenol ortho-arylation reactions, Tetrahedron Lett. 45 (2004) 5167-5170.
-
[9]
[9] K. Ito, H. Tanaka, Syntheses of 1,2,3,4-tetrahydroisoquinolines from N-sulfonylphenethylamines and aldehydes, Chem. Pharm. Bull. 25 (1977) 1732-1739.
-
[10]
[10] H.M. Wang, I.J. Kang, L.C. Chen, Ytterbium triflate-catalysed synthesis of ethyl 1,2,3,4-tetrahydroisoquinoline-1-carboxylates using ethyl chloro(phenylselanyl) acetate, Heterocycles 60 (2003) 1899-1905.
-
[11]
[11] H. Kohno, Y. Sekine, A novel cyclization of electron deficient N-benzenesulfonylb-phenethylamines using ethyl chloro(methylthio)acetate. Synthesis of ethyl 1,2,3,4-tetrahydroisoquinoline-1-carboxylates, Heterocycles 42 (1996) 141-144.
-
[12]
[12] C.C. Silveira, C.R. Bernardi, A.L. Braga, T.S. Kaufman, Thioorthoesters in the activated Pictet-Spengler cyclization. Synthesis of 1-thiosubstituted tetrahydroisoquinolines and carbon-carbon bond formation via sulfonyl iminium ions generated from N,S-sulfonyl acetals, Tetrahedron Lett. 44 (2003) 6137-6140.
-
[13]
[13] G. Pasquale, D. Ruiz, J. Autino, et al., Efficient and suitable preparation of Nsulfonyl-1,2,3,4-tetrahydroisoquinolines and ring analogues using recyclable H6P2W18O62·24H2O/SiO2 catalyst, C. R. Chimie 15 (2012) 758-763.
-
[14]
[14] G.P. Romanelli, D.M. Ruiz, J.C. Autino, H.E. Giaccio, A suitable preparation of Nsulfonyl-1,2,3,4-tetrahydroisoquinolines and their ring homologs with a reusable Preyssler heteropolyacid as catalyst, Mol. Divers. 14 (2010) 803-807.
-
[15]
[15] H. Kohno, K. Yamada, A novel synthesis of isoquinolines containing an electronwithdrawing substituent, Heterocycles 51 (1999) 103-117.
-
[16]
[16] T. Anknor, G. Hilmersson, Instantaneous deprotection of tosylamides and esters with SmI2/amine/water, Org. Lett. 11 (2009) 503-506.
-
[17]
[17] H. Senboku, K. Nakahara, T. Fukuhara, S. Hara, Hg cathode-free electrochemical detosylation of N,N-disubstituted p-toluenesulfonamides: mild, efficient, and selective removal of N-tosyl group, Tetrahedron Lett. 51 (2010) 435-438.
-
[18]
[18] J.N.W. Timothy, Alternative synthesis of septic shock candidate 3,4-dihydro-3,3-dimethylisoquinoline N-oxide (MDL 101002) utilizing an improved Pictet-Spengler reaction, J. Org. Chem. 63 (1998) 406-407.
-
[19]
[19] V.L. Ponzo, T.S. Kaufman, The first chiral version of Jackson N-benzyl-N-tosylaminoacetal cyclization. A new enantioselective total synthesis of 1-S-(±)-salsolidine, Tetrahedron Lett. 36 (1995) 9105-9108.
-
[20]
[20] J. Dong, X. Shi, J. Yan, et al., Efficient and practical one-pot conversions of Ntosyltetrahydroisoquinolines into isoquinolines and of N-tosyltetrahydro-b-carbolines into b-carbolines through tandem b-elimination and aromatization, Eur. J. Org. Chem. (2010) 6987-6992.
-
[21]
[21] C.C. Silveira, C.R. Bernardi, A.L. Braga, T.S. Kaufman, Desulfonylation of N-sulfonyl tetrahydroisoquinoline derivatives by potassium fluoride on alumina under microwave irradiation: selective synthesis of 3,4-dihydroisoquinolines and isoquinoline, Synlett (2002) 907-910.
-
[22]
[22] T. Ueda, H. Kotsuki, Heteropoly acids: green chemical catalysts in organic synthesis, Heterocycles 76 (2008) 73-97.
-
[23]
[23] G.P. Romanelli, J.C. Autino, Recent applications of heteropolyacids and related compounds in heterocycles synthesis, Mini-Rev. Org. Chem. 6 (2009) 359-366.
-
[24]
[24] I.V. Kozhevnikov, Heteropoly acids and related compounds as catalysts for fine chemical synthesis, Catal. Rev. Sci. Eng. 37 (1995) 311-352.
-
[25]
[25] R. Pingaew, S. Prachayasittikul, S. Ruchirawat, V. Prachayasittikul, Synthesis and cytotoxicity of novel 2,2'-bis-and 2,2',2"-tris-indolylmethanes-based bengacarboline analogs, Arch. Pharm. Res. 35 (2012) 949-954.
-
[26]
[26] R. Pingaew, A. Worachartcheewan, C. Nantasenamat, et al., Synthesis, cytotoxicity and QSAR study of N-tosyl-1,2,3,4-tetrahydroisoquinoline derivatives, Arch. Pharm. Res. (2013), http://dx.doi.org/10.1007/s12272-013-0111-9.
-
[27]
[27] J.L. Jios, G.P. Romanelli, J.C. Autino, et al., Complete 1H and 13C NMR spectral assignment of N-aralkylsulfonamides, N-sulfonyl-1,2,3,4-tetrahydroisoquinolines and N-sulfonyl-2,3,4,5-tetrahydro-1H-2-benzazepines. Conformational analysis of N-[((3',4'-dichlorophenyl) methyl)sulfonyl]-3-methyl-2,3,4,5-tetrahydro-1H-2-benzazepin, Magn. Reson. Chem. 43 (2005) 1057-1062.
-
[28]
[28] R. Pingaew, S. Prachayasittikul, S. Ruchirawat, V. Prachayasittikul, Synthesis and cytotoxicity of novel N-sulfonyl-1,2,3,4-tetrahydoisoquinoline thiosemicarbazone derivatives, Med. Chem. Res. 22 (2013) 267-277.
-
[29]
[29] A. Javid, M.M. Heravi, F.F. Bamoharram, One-pot three-component synthesis of bacetamido carbonyl compounds catalyzed by heteropoly acids, Monatsh. Chem. 143 (2012) 831-834.
-
[1]
-
-
[1]
Zhen Liu , Zhi-Yuan Ren , Chen Yang , Xiangyi Shao , Li Chen , Xin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939
-
[2]
Shiyu Pan , Bo Cao , Deling Yuan , Tifeng Jiao , Qingrui Zhang , Shoufeng Tang . Complexes of cupric ion and tartaric acid enhanced calcium peroxide Fenton-like reaction for metronidazole degradation. Chinese Chemical Letters, 2024, 35(7): 109185-. doi: 10.1016/j.cclet.2023.109185
-
[3]
Jing Cao , Dezheng Zhang , Bianqing Ren , Ping Song , Weilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863
-
[4]
Xinghui Yao , Zhouyu Wang , Da-Gang Yu . Sustainable electrosynthesis: Enantioselective electrochemical Rh(III)/chiral carboxylic acid-catalyzed oxidative CH cyclization coupled with hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(9): 109916-. doi: 10.1016/j.cclet.2024.109916
-
[5]
Wenyi Mei , Lijuan Xie , Xiaodong Zhang , Cunjian Shi , Fengzhi Wang , Qiqi Fu , Zhenjiang Zhao , Honglin Li , Yufang Xu , Zhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825
-
[6]
Huipeng Zhao , Xiaoqiang Du . Polyoxometalates as the redox anolyte for efficient conversion of biomass to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(2): 100246-100246. doi: 10.1016/j.cjsc.2024.100246
-
[7]
Dan-Ying Xing , Xiao-Dan Zhao , Chuan-Shu He , Bo Lai . Kinetic study and DFT calculation on the tetracycline abatement by peracetic acid. Chinese Chemical Letters, 2024, 35(9): 109436-. doi: 10.1016/j.cclet.2023.109436
-
[8]
Lihang Wang , Mary Li Javier , Chunshan Luo , Tingsheng Lu , Shudan Yao , Bing Qiu , Yun Wang , Yunfeng Lin . Research advances of tetrahedral framework nucleic acid-based systems in biomedicine. Chinese Chemical Letters, 2024, 35(11): 109591-. doi: 10.1016/j.cclet.2024.109591
-
[9]
Hanqing Zhang , Xiaoxia Wang , Chen Chen , Xianfeng Yang , Chungli Dong , Yucheng Huang , Xiaoliang Zhao , Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089
-
[10]
Linshan Peng , Qihang Peng , Tianxiang Jin , Zhirong Liu , Yong Qian . Highly efficient capture of thorium ion by citric acid-modified chitosan gels from aqueous solution. Chinese Chemical Letters, 2024, 35(5): 108891-. doi: 10.1016/j.cclet.2023.108891
-
[11]
Yingying Yan , Wanhe Jia , Rui Cai , Chun Liu . An AIPE-active fluorinated cationic Pt(Ⅱ) complex for efficient detection of picric acid in aqueous media. Chinese Chemical Letters, 2024, 35(5): 108819-. doi: 10.1016/j.cclet.2023.108819
-
[12]
Fengyun Li , Zerong Pei , Shuting Chen , Gen li , Mengyang Liu , Liqin Ding , Jingbo Liu , Feng Qiu . Multifunctional nano-herb based on tumor microenvironment for enhanced tumor therapy of gambogic acid. Chinese Chemical Letters, 2024, 35(5): 108752-. doi: 10.1016/j.cclet.2023.108752
-
[13]
Peizhe Li , Qiaoling Liu , Mengyu Pei , Yuci Gan , Yan Gong , Chuchen Gong , Pei Wang , Mingsong Wang , Xiansong Wang , Da-Peng Yang , Bo Liang , Guangyu Ji . Chlorogenic acid supported strontium polyphenol networks ensemble microneedle patch to promote diabetic wound healing. Chinese Chemical Letters, 2024, 35(8): 109457-. doi: 10.1016/j.cclet.2023.109457
-
[14]
Yuanjiao Liu , Xiaoyang Zhao , Songyao Zhang , Yi Wang , Yutuo Zheng , Xinrui Miao , Wenli Deng . Site-selection and recognition of aromatic carboxylic acid in response to coronene and pyridine derivative. Chinese Chemical Letters, 2024, 35(8): 109404-. doi: 10.1016/j.cclet.2023.109404
-
[15]
Xubin Qian , Lei Xu , Xu Ge , Zhun Liu , Cheng Fang , Jianbing Wang , Junfeng Niu . Can perfluorooctanoic acid be effectively degraded using β-PbO2 reactive electrochemical membrane?. Chinese Chemical Letters, 2024, 35(7): 109218-. doi: 10.1016/j.cclet.2023.109218
-
[16]
Xinyue Lan , Junguang Liang , Churan Wen , Xiaolong Quan , Huimin Lin , Qinqin Xu , Peixian Chen , Guangyu Yao , Dan Zhou , Meng Yu . Photo-manipulated polyunsaturated fatty acid-doped liposomal hydrogel for flexible photoimmunotherapy. Chinese Chemical Letters, 2024, 35(4): 108616-. doi: 10.1016/j.cclet.2023.108616
-
[17]
Dexuan Xiao , Tianyu Chen , Tianxu Zhang , Sirong Shi , Mei Zhang , Xin Qin , Yunkun Liu , Longjiang Li , Yunfeng Lin . Transdermal treatment for malignant melanoma by aptamer-modified tetrahedral framework nucleic acid delivery of vemurafenib. Chinese Chemical Letters, 2024, 35(4): 108602-. doi: 10.1016/j.cclet.2023.108602
-
[18]
Yiqiao Chen , Ao Liu , Biwen Yang , Zhenzhen Li , Binggang Ye , Zhouyi Guo , Zhiming Liu , Haolin Chen . Photoluminescence and photothermal conversion in boric acid derived carbon dots for targeted microbial theranostics. Chinese Chemical Letters, 2024, 35(9): 109295-. doi: 10.1016/j.cclet.2023.109295
-
[19]
Weijian Zhang , Xianyu Deng , Liying Wang , Jian Wang , Xiuting Guo , Lianggui Huang , Xinyi Wang , Jun Wu , Linjia Jiang . Poly(ferulic acid) nanocarrier enhances chemotherapy sensitivity of acute myeloid leukemia by selectively targeting inflammatory macrophages. Chinese Chemical Letters, 2024, 35(9): 109422-. doi: 10.1016/j.cclet.2023.109422
-
[20]
Di Wang , Qing-Song Chen , Yi-Ran Lin , Yun-Xin Hou , Wei Han , Juan Yang , Xin Li , Zhen-Hai Wen . Tuning strategies and electrolyzer design for Bi-based nanomaterials towards efficient CO2 reduction to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(8): 100346-100346. doi: 10.1016/j.cjsc.2024.100346
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(737)
- HTML views(15)