Citation: Ratchanok Pingaew, Supaluk Prachayasittikul, Somsak Ruchirawat, Virapong Prachayasittikul. Tungstophosphoric acid catalyzed synthesis of N-sulfonyl-1,2,3,4-tetrahydroisoquinoline analogs[J]. Chinese Chemical Letters, ;2013, 24(10): 941-944. shu

Tungstophosphoric acid catalyzed synthesis of N-sulfonyl-1,2,3,4-tetrahydroisoquinoline analogs

  • Corresponding author: Ratchanok Pingaew, 
  • Received Date: 28 March 2013
    Available Online: 8 June 2013

    Fund Project:

  • An operationally simple and eco-friendly protocol has been developed for the synthesis of N-sulfonyl-1,2,3,4-tetrahydroisoquinolines 3 using the modified Pictet-Spengler reaction of N-sulfonylphenylethylamines 1 and various aldehydes 2 in the presence of tungstophosphoric acid hydrate.
  • 加载中
    1. [1]

      [1] K.W. Bentley, The Isoquinoline Alkaloids, Harwood Academic Publishers, Amsterdam, 1998.

    2. [2]

      [2] J.D. Scott, R.M. Williams, Chemistry and biology of the tetrahydroisoquinoline antitumor antibiotics, Chem. Rev. 102 (2002) 1669-1730.

    3. [3]

      [3] P. Siengalewicz, U. Rinner, J. Mulzer, Recent progress in the total synthesis of naphthyridnomycin and lemonomycin tetrahydroisoquinoline antibiotics (TAAs), Chem. Soc. Rev. 37 (2008) 2676-2690.

    4. [4]

      [4] K. Iwasa, M. Moriyasu, Y. Tachibana, et al., Simple isoquinoline and benzylisoquinoline alkaloids as potential antimicrobial, antimalarial, cytotoxic, and anti-HIV agents, Bioorg. Med. Chem. 9 (2001) 2871-2884.

    5. [5]

      [5] E.D. Cox, J.M. Cook, The Pictet-Spengler condensation: a new direction for an old reaction, Chem. Rev. 95 (1995) 1797-1842.

    6. [6]

      [6] E.L. Larghi, M. Amongero, A.B.J. Bracca, T.S. Kaufman, The intermolecular Pictet-Spengler condensation with chiral carbonyl derivatives in the stereoselective syntheses of optically active isoquinoline and indole alkaloids, Arkivoc 12 (2005) 98-153.

    7. [7]

      [7] L.K. Lukanov, A.P. Venkov, N.M. Mollov, Application of the intramolecular aamidoalkylation reaction for the synthesis of 2-arylsulfonyl-1,2,3,4-tetrahydroisoquinolines, Synthesis (1987) 204-206.

    8. [8]

      [8] G.D. Cuny, Synthesis of (±)-aporphine utilizing Pictet-Spengler and intramolecular phenol ortho-arylation reactions, Tetrahedron Lett. 45 (2004) 5167-5170.

    9. [9]

      [9] K. Ito, H. Tanaka, Syntheses of 1,2,3,4-tetrahydroisoquinolines from N-sulfonylphenethylamines and aldehydes, Chem. Pharm. Bull. 25 (1977) 1732-1739.

    10. [10]

      [10] H.M. Wang, I.J. Kang, L.C. Chen, Ytterbium triflate-catalysed synthesis of ethyl 1,2,3,4-tetrahydroisoquinoline-1-carboxylates using ethyl chloro(phenylselanyl) acetate, Heterocycles 60 (2003) 1899-1905.

    11. [11]

      [11] H. Kohno, Y. Sekine, A novel cyclization of electron deficient N-benzenesulfonylb-phenethylamines using ethyl chloro(methylthio)acetate. Synthesis of ethyl 1,2,3,4-tetrahydroisoquinoline-1-carboxylates, Heterocycles 42 (1996) 141-144.

    12. [12]

      [12] C.C. Silveira, C.R. Bernardi, A.L. Braga, T.S. Kaufman, Thioorthoesters in the activated Pictet-Spengler cyclization. Synthesis of 1-thiosubstituted tetrahydroisoquinolines and carbon-carbon bond formation via sulfonyl iminium ions generated from N,S-sulfonyl acetals, Tetrahedron Lett. 44 (2003) 6137-6140.

    13. [13]

      [13] G. Pasquale, D. Ruiz, J. Autino, et al., Efficient and suitable preparation of Nsulfonyl-1,2,3,4-tetrahydroisoquinolines and ring analogues using recyclable H6P2W18O62·24H2O/SiO2 catalyst, C. R. Chimie 15 (2012) 758-763.

    14. [14]

      [14] G.P. Romanelli, D.M. Ruiz, J.C. Autino, H.E. Giaccio, A suitable preparation of Nsulfonyl-1,2,3,4-tetrahydroisoquinolines and their ring homologs with a reusable Preyssler heteropolyacid as catalyst, Mol. Divers. 14 (2010) 803-807.

    15. [15]

      [15] H. Kohno, K. Yamada, A novel synthesis of isoquinolines containing an electronwithdrawing substituent, Heterocycles 51 (1999) 103-117.

    16. [16]

      [16] T. Anknor, G. Hilmersson, Instantaneous deprotection of tosylamides and esters with SmI2/amine/water, Org. Lett. 11 (2009) 503-506.

    17. [17]

      [17] H. Senboku, K. Nakahara, T. Fukuhara, S. Hara, Hg cathode-free electrochemical detosylation of N,N-disubstituted p-toluenesulfonamides: mild, efficient, and selective removal of N-tosyl group, Tetrahedron Lett. 51 (2010) 435-438.

    18. [18]

      [18] J.N.W. Timothy, Alternative synthesis of septic shock candidate 3,4-dihydro-3,3-dimethylisoquinoline N-oxide (MDL 101002) utilizing an improved Pictet-Spengler reaction, J. Org. Chem. 63 (1998) 406-407.

    19. [19]

      [19] V.L. Ponzo, T.S. Kaufman, The first chiral version of Jackson N-benzyl-N-tosylaminoacetal cyclization. A new enantioselective total synthesis of 1-S-(±)-salsolidine, Tetrahedron Lett. 36 (1995) 9105-9108.

    20. [20]

      [20] J. Dong, X. Shi, J. Yan, et al., Efficient and practical one-pot conversions of Ntosyltetrahydroisoquinolines into isoquinolines and of N-tosyltetrahydro-b-carbolines into b-carbolines through tandem b-elimination and aromatization, Eur. J. Org. Chem. (2010) 6987-6992.

    21. [21]

      [21] C.C. Silveira, C.R. Bernardi, A.L. Braga, T.S. Kaufman, Desulfonylation of N-sulfonyl tetrahydroisoquinoline derivatives by potassium fluoride on alumina under microwave irradiation: selective synthesis of 3,4-dihydroisoquinolines and isoquinoline, Synlett (2002) 907-910.

    22. [22]

      [22] T. Ueda, H. Kotsuki, Heteropoly acids: green chemical catalysts in organic synthesis, Heterocycles 76 (2008) 73-97.

    23. [23]

      [23] G.P. Romanelli, J.C. Autino, Recent applications of heteropolyacids and related compounds in heterocycles synthesis, Mini-Rev. Org. Chem. 6 (2009) 359-366.

    24. [24]

      [24] I.V. Kozhevnikov, Heteropoly acids and related compounds as catalysts for fine chemical synthesis, Catal. Rev. Sci. Eng. 37 (1995) 311-352.

    25. [25]

      [25] R. Pingaew, S. Prachayasittikul, S. Ruchirawat, V. Prachayasittikul, Synthesis and cytotoxicity of novel 2,2'-bis-and 2,2',2"-tris-indolylmethanes-based bengacarboline analogs, Arch. Pharm. Res. 35 (2012) 949-954.

    26. [26]

      [26] R. Pingaew, A. Worachartcheewan, C. Nantasenamat, et al., Synthesis, cytotoxicity and QSAR study of N-tosyl-1,2,3,4-tetrahydroisoquinoline derivatives, Arch. Pharm. Res. (2013), http://dx.doi.org/10.1007/s12272-013-0111-9.

    27. [27]

      [27] J.L. Jios, G.P. Romanelli, J.C. Autino, et al., Complete 1H and 13C NMR spectral assignment of N-aralkylsulfonamides, N-sulfonyl-1,2,3,4-tetrahydroisoquinolines and N-sulfonyl-2,3,4,5-tetrahydro-1H-2-benzazepines. Conformational analysis of N-[((3',4'-dichlorophenyl) methyl)sulfonyl]-3-methyl-2,3,4,5-tetrahydro-1H-2-benzazepin, Magn. Reson. Chem. 43 (2005) 1057-1062.

    28. [28]

      [28] R. Pingaew, S. Prachayasittikul, S. Ruchirawat, V. Prachayasittikul, Synthesis and cytotoxicity of novel N-sulfonyl-1,2,3,4-tetrahydoisoquinoline thiosemicarbazone derivatives, Med. Chem. Res. 22 (2013) 267-277.

    29. [29]

      [29] A. Javid, M.M. Heravi, F.F. Bamoharram, One-pot three-component synthesis of bacetamido carbonyl compounds catalyzed by heteropoly acids, Monatsh. Chem. 143 (2012) 831-834.

  • 加载中
    1. [1]

      Zhen LiuZhi-Yuan RenChen YangXiangyi ShaoLi ChenXin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939

    2. [2]

      Shiyu PanBo CaoDeling YuanTifeng JiaoQingrui ZhangShoufeng Tang . Complexes of cupric ion and tartaric acid enhanced calcium peroxide Fenton-like reaction for metronidazole degradation. Chinese Chemical Letters, 2024, 35(7): 109185-. doi: 10.1016/j.cclet.2023.109185

    3. [3]

      Jing CaoDezheng ZhangBianqing RenPing SongWeilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863

    4. [4]

      Xinghui YaoZhouyu WangDa-Gang Yu . Sustainable electrosynthesis: Enantioselective electrochemical Rh(III)/chiral carboxylic acid-catalyzed oxidative CH cyclization coupled with hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(9): 109916-. doi: 10.1016/j.cclet.2024.109916

    5. [5]

      Wenyi MeiLijuan XieXiaodong ZhangCunjian ShiFengzhi WangQiqi FuZhenjiang ZhaoHonglin LiYufang XuZhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825

    6. [6]

      Huipeng Zhao Xiaoqiang Du . Polyoxometalates as the redox anolyte for efficient conversion of biomass to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(2): 100246-100246. doi: 10.1016/j.cjsc.2024.100246

    7. [7]

      Dan-Ying XingXiao-Dan ZhaoChuan-Shu HeBo Lai . Kinetic study and DFT calculation on the tetracycline abatement by peracetic acid. Chinese Chemical Letters, 2024, 35(9): 109436-. doi: 10.1016/j.cclet.2023.109436

    8. [8]

      Lihang WangMary Li JavierChunshan LuoTingsheng LuShudan YaoBing QiuYun WangYunfeng Lin . Research advances of tetrahedral framework nucleic acid-based systems in biomedicine. Chinese Chemical Letters, 2024, 35(11): 109591-. doi: 10.1016/j.cclet.2024.109591

    9. [9]

      Hanqing Zhang Xiaoxia Wang Chen Chen Xianfeng Yang Chungli Dong Yucheng Huang Xiaoliang Zhao Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089

    10. [10]

      Linshan PengQihang PengTianxiang JinZhirong LiuYong Qian . Highly efficient capture of thorium ion by citric acid-modified chitosan gels from aqueous solution. Chinese Chemical Letters, 2024, 35(5): 108891-. doi: 10.1016/j.cclet.2023.108891

    11. [11]

      Yingying YanWanhe JiaRui CaiChun Liu . An AIPE-active fluorinated cationic Pt(Ⅱ) complex for efficient detection of picric acid in aqueous media. Chinese Chemical Letters, 2024, 35(5): 108819-. doi: 10.1016/j.cclet.2023.108819

    12. [12]

      Fengyun LiZerong PeiShuting ChenGen liMengyang LiuLiqin DingJingbo LiuFeng Qiu . Multifunctional nano-herb based on tumor microenvironment for enhanced tumor therapy of gambogic acid. Chinese Chemical Letters, 2024, 35(5): 108752-. doi: 10.1016/j.cclet.2023.108752

    13. [13]

      Peizhe LiQiaoling LiuMengyu PeiYuci GanYan GongChuchen GongPei WangMingsong WangXiansong WangDa-Peng YangBo LiangGuangyu Ji . Chlorogenic acid supported strontium polyphenol networks ensemble microneedle patch to promote diabetic wound healing. Chinese Chemical Letters, 2024, 35(8): 109457-. doi: 10.1016/j.cclet.2023.109457

    14. [14]

      Yuanjiao LiuXiaoyang ZhaoSongyao ZhangYi WangYutuo ZhengXinrui MiaoWenli Deng . Site-selection and recognition of aromatic carboxylic acid in response to coronene and pyridine derivative. Chinese Chemical Letters, 2024, 35(8): 109404-. doi: 10.1016/j.cclet.2023.109404

    15. [15]

      Xubin QianLei XuXu GeZhun LiuCheng FangJianbing WangJunfeng Niu . Can perfluorooctanoic acid be effectively degraded using β-PbO2 reactive electrochemical membrane?. Chinese Chemical Letters, 2024, 35(7): 109218-. doi: 10.1016/j.cclet.2023.109218

    16. [16]

      Xinyue LanJunguang LiangChuran WenXiaolong QuanHuimin LinQinqin XuPeixian ChenGuangyu YaoDan ZhouMeng Yu . Photo-manipulated polyunsaturated fatty acid-doped liposomal hydrogel for flexible photoimmunotherapy. Chinese Chemical Letters, 2024, 35(4): 108616-. doi: 10.1016/j.cclet.2023.108616

    17. [17]

      Dexuan XiaoTianyu ChenTianxu ZhangSirong ShiMei ZhangXin QinYunkun LiuLongjiang LiYunfeng Lin . Transdermal treatment for malignant melanoma by aptamer-modified tetrahedral framework nucleic acid delivery of vemurafenib. Chinese Chemical Letters, 2024, 35(4): 108602-. doi: 10.1016/j.cclet.2023.108602

    18. [18]

      Yiqiao ChenAo LiuBiwen YangZhenzhen LiBinggang YeZhouyi GuoZhiming LiuHaolin Chen . Photoluminescence and photothermal conversion in boric acid derived carbon dots for targeted microbial theranostics. Chinese Chemical Letters, 2024, 35(9): 109295-. doi: 10.1016/j.cclet.2023.109295

    19. [19]

      Weijian ZhangXianyu DengLiying WangJian WangXiuting GuoLianggui HuangXinyi WangJun WuLinjia Jiang . Poly(ferulic acid) nanocarrier enhances chemotherapy sensitivity of acute myeloid leukemia by selectively targeting inflammatory macrophages. Chinese Chemical Letters, 2024, 35(9): 109422-. doi: 10.1016/j.cclet.2023.109422

    20. [20]

      Di Wang Qing-Song Chen Yi-Ran Lin Yun-Xin Hou Wei Han Juan Yang Xin Li Zhen-Hai Wen . Tuning strategies and electrolyzer design for Bi-based nanomaterials towards efficient CO2 reduction to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(8): 100346-100346. doi: 10.1016/j.cjsc.2024.100346

Metrics
  • PDF Downloads(0)
  • Abstract views(737)
  • HTML views(15)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return