Citation: Xia Du, Dong-Xia Zhao, Zhong-Zhi Yang. Quick estimation of the Dpb for predicting the strength of chemical bond in situ[J]. Chinese Chemical Letters, ;2013, 24(10): 912-916. shu

Quick estimation of the Dpb for predicting the strength of chemical bond in situ

  • Corresponding author: Dong-Xia Zhao, 
  • Received Date: 23 May 2013
    Available Online: 5 June 2013

    Fund Project:

  • An approximate method has been established to calculate the depth of the potential acting on an electron in a molecule at the saddle point along a chemical bond, denoted by Dpb. It is a new indicator which can be used for predicting the strength of a chemical bond. In this work, as a practical application for demonstrating thismethod, we calculated the Dpb of deoxyribonucleosides and ribonucleosides along all C-H and N-H chemical bonds using the method. The results are in fair agreement with those results of previously reported experimental and theoretical observations.
  • 加载中
    1. [1]

      [1] Y.R. Luo, Handbook of Bond Dissociation Energies in Organic Compounds, CRC Press, Boca Raton, 2002.

    2. [2]

      [2] Y.R. Luo, Comprehensive Handbook of Chemical Bond Energies, CRC Press, Boca Raton, 2007.

    3. [3]

      [3] Z.Z. Yang, L.D. Gong, D.X. Zhao, et al., Method and algorithm of obtaining the molecular intrinsic characteristic contours (MICCs) of organic molecules, J. Comput. Chem. 26 (2005) 35-47.

    4. [4]

      [4] Z.Z. Yang, D.X. Zhao, Y. Wu, Polarization and bonding of the intrinsic characteristic contours of hydrogen and fluorine atoms of forming a hydrogen fluoride molecule based on an ab initio study, J. Chem. Phys. 121 (2004) 3452-3462.

    5. [5]

      [5] Z.Z. Yang, Y.L. Ding, D.X. Zhao, Insight into Markovnikov reactions of alkenes in terms of ab initio and molecular face theory, ChemPhysChem 9 (2008) 2379-2389.

    6. [6]

      [6] D.X. Zhao, L.D. Gong, Z.Z. Yang, The relations of bond length and force constant with the potential acting on an electron in a molecule, J. Phys. Chem. A. 109 (2005) 10121-10128.

    7. [7]

      [7] X. Du, D.X. Zhao, Z.Z. Yang, Development of a method to accurately calculate the Dpb and quickly predict the strength of a chemical bond, Chem. Phys. 412 (2013) 84-91.

    8. [8]

      [8] W.K. Pogozelski, T.D. Tullius, Oxidative strand scission of nucleic acids: routes initiated by hydrogen abstraction from the sugar moiety, Chem. Rev. 98 (1998) 1089-1107.

    9. [9]

      [9] C.J. Burrows, J.G. Muller, Oxidative nucleobase modifications leading to strand scission, Chem. Rev. 98 (1998) 1109-1151.

    10. [10]

      [10] B. Giese, Radicals and the birth and death of DNA, Chimia 55 (2001) 275-280.

    11. [11]

      [11] M. Dizdaroglu, P. Jaruga, M. Birincioglu, et al., Free radical-induced damage to DNA: mechanisms and measurement, Free Radic. Biol. Med. 32 (2002) 1102-1115.

    12. [12]

      [12] S.S. Wallace, Biological consequences of free radical-damaged DNA bases, Free Radic. Biol. Med. 33 (2002) 1-14.

    13. [13]

      [13] C. Chatgilialoglu, P. O'Neill, Free radicals associated with DNA damage, Exp. Gerontol. 36 (2001) 1459-1471.

    14. [14]

      [14] O.D. Schaerer, Chemistry and biology of DNA repair, Angew. Chem. Int. Ed. 42 (2003) 2946-2974.

    15. [15]

      [15] Y. Wu, Z.Z. Yang, Atom-bond electronegativity equalization method fused into molecular mechanics. Ⅱ. A seven-site fluctuating charge and flexible body water potential function for liquid water, J. Phys. Chem. A. 108 (2004) 7563-7576.

    16. [16]

      [16] Z.Z. Yang, Q. Zhang, Study of peptide conformation in terms of the ABEEM/MM method, J. Comput. Chem. 27 (2006) 1-10.

    17. [17]

      [17] L.D. Gong, Development and applications of the ABEEM fluctuating charge molecular force field in the ion-containing systems, Sci. China Chem. 55 (2012) 2471-2484.

    18. [18]

      [18] D.X. Zhao, C. Liu, F.F. Wang, et al., Development of a polarizable force field using multiple fluctuating charges per atom, J. Chem. Theory. Comput. 6 (2010) 795-804.

    19. [19]

      [19] Z.Z. Yang, E.R. Davidson, Evaluation of a characteristic atomic radius by an ab initio method, Int. J. Quantum Chem. 62 (1997) 47-53.

    20. [20]

      [20] A. Gelbin, B. Schneider, L. Clowney, et al., Geometric parameters in nucleic acids: sugar and phosphate constituents, J. Am. Chem. Soc. 118 (1996) 519-529.

    21. [21]

      [21] N. Leulliot, M. Ghomi, G. Scalmani, et al., Ground state properties of the nucleic acid constituents studied by density functional calculations. 1. Conformational features of ribose, dimethyl phosphate, uridine, cytidine, 5'-methyl phosphateuridine, and 3'-methyl phosphate-uridine, J. Phys. Chem. A. 103 (1999) 8716-8724.

    22. [22]

      [22] A. Hocquet, N. Leulliot, M. Ghomi, Ground-state properties of nucleic acid constituents studied by density functional calculations. 3. Role of sugar puckering and base orientation on the energetics and geometry of 2'-deoxyribonucleosides and ribonucleosides, J. Phys. Chem. B. 104 (2000) 4560-4568.

    23. [23]

      [23] W. Saenger, Principles of Nucleic Acid Structure, Springer-Verlag, New York, 1984.

    24. [24]

      [24] W.D. Cornell, P. Cieplak, C.I. Bayly, et al., A second generation force field for the simulation of proteins, nucleic acids, and organic molecules, J. Am. Chem. Soc. 117 (1995) 5179-5197.

    25. [25]

      [25] M. Polak, B. Mohar, J. Kobe, et al., Anomeric effect in purine nucleosides. Evaluation of the steric effect of a purinic aglycon from the pseudorotational equilibrium of cyclopentane in carbocyclic c-nucleoside 1, J. Am. Chem. Soc. 120 (1998) 2508-2513.

    26. [26]

      [26] O.V. Shishkin, A. Pelmenschikov, D.M. Hovorun, et al., Molecular structure of free canonical 20-deoxyribonucleosides: a density functional study, J. Mol. Struct. 526 (2000) 329-341.

    27. [27]

      [27] S.K. Mishra, P.C. Mishra, An ab initio theoretical study of electronic structure and properties of 2'-deoxyguanosine in gas phase and aqueous media, J. Comput. Chem. 23 (2002) 530-540.

    28. [28]

      [28] N. Foloppe, B. Hartmann, L. Nilsson, et al., Intrinsic conformational energetics associated with the glycosyl torsion in DNA: A quantum mechanical study, Biophys. J. 82 (2002) 1554-1569.

    29. [29]

      [29] M.J. Li, L. Liu, Y. Fu, et al., Development of an ONIOM-G3B3 method to accurately predict C-H and N-H bond dissociation enthalpies of ribonucleosides and deoxyribonucleosides, J. Phys. Chem. B. 109 (2005) 13818-13826.

    30. [30]

      [30] M.C. Wahl, M. Sundaralingam, C-H...O hydrogen bonding in biology, Trends Biochem. Sci. 22 (1997) 97-102.

    31. [31]

      [31] P. Auffinger, E. Westhof, Rules governing the orientation of the 2'-hydroxyl group in RNA, J. Mol. Biol. 274 (1997) 54-63.

    32. [32]

      [32] T. Nauser, C. Schoneich, Thiyl radical reaction with thymine: absolute rate constant for hydrogen abstraction and comparison to benzylic C-H bonds, Chem. Res. Toxicol. 16 (2003) 1056-1061.

    33. [33]

      [33] T.D. Tullius, B.A. Dombroski, Iron (2) EDTA used to measure the helical twist along any DNA molecule, Science 230 (1985) 679-681.

    34. [34]

      [34] S.E. Rokita, L. Romero-Fredes, The ensemble reactions of hydroxyl radical exhibit no specificity for primary or secondary structure of DNA, Nucleic Acids Res. 20 (1992) 3069-3072.

    35. [35]

      [35] A.O. Colson, M.D. Sevilla, Structure and relative stability of deoxyribose radicals in a model DNA backbone: ab initio molecular orbital calculations, J. Phys. Chem. 99 (1995) 3867-3874.

    36. [36]

      [36] X. Li, M.D. Sevilla, L. Sanche, Hydrogen atom loss in pyrimidine DNA bases induced by low-energy electrons: energetics predicted by theory, J. Phys. Chem. B. 108 (2004) 19013-19019.

    37. [37]

      [37] K. Miaskiewicz, R. Osman, Theoretical study on the deoxyribose radicals formed by hydrogen abstraction, J. Am. Chem. Soc. 116 (1994) 232-238.

    38. [38]

      [38] N. Luo, A. Litvin, R. Osman, Theoretical studies of ribose and its radicals produced by hydrogen abstraction from ring carbons, J. Phys. Chem. A. 103 (1999) 592-600.

  • 加载中
    1. [1]

      Manman OuYunjian ZhuJiahao LiuZhaoxuan LiuJianjun WangJun SunChuanxiang QinLixing Dai . Polyvinyl alcohol fiber with enhanced strength and modulus and intense cyan fluorescence based on covalently functionalized graphene quantum dots. Chinese Chemical Letters, 2025, 36(2): 110510-. doi: 10.1016/j.cclet.2024.110510

    2. [2]

      Yang QinJiangtian LiXuehao ZhangKaixuan WanHeao ZhangFeiyang HuangLimei WangHongxun WangLongjie LiXianjin Xiao . Toeless and reversible DNA strand displacement based on Hoogsteen-bond triplex. Chinese Chemical Letters, 2024, 35(5): 108826-. doi: 10.1016/j.cclet.2023.108826

    3. [3]

      Fangzhou WangWentong GaoChenghui Li . A weak but inert hindered urethane bond for high-performance dynamic polyurethane polymers. Chinese Chemical Letters, 2024, 35(5): 109305-. doi: 10.1016/j.cclet.2023.109305

    4. [4]

      Yunkang TongHaiqiao HuangHaolan LiMingle LiWen SunJianjun DuJiangli FanLei WangBin LiuXiaoqiang ChenXiaojun Peng . Cooperative bond scission by HRP/H2O2 for targeted prodrug activation. Chinese Chemical Letters, 2024, 35(12): 109663-. doi: 10.1016/j.cclet.2024.109663

    5. [5]

      Junmeng LuoQiongqiong WanSuming Chen . Chemistry-driven mass spectrometry for structural lipidomics at the C=C bond isomer level. Chinese Chemical Letters, 2025, 36(1): 109836-. doi: 10.1016/j.cclet.2024.109836

    6. [6]

      Ningning GaoYue ZhangZhenhao YangLijing XuKongyin ZhaoQingping XinJunkui GaoJunjun ShiJin ZhongHuiguo Wang . Ba2+/Ca2+ co-crosslinked alginate hydrogel filtration membrane with high strength, high flux and stability for dye/salt separation. Chinese Chemical Letters, 2024, 35(5): 108820-. doi: 10.1016/j.cclet.2023.108820

    7. [7]

      Ze WangHao LiangAnnan LiuXingchen LiLin GuanLei LiLiang HeAndrew K. WhittakerBai YangQuan Lin . Strength through unity: Alkaline phosphatase-responsive AIEgen nanoprobe for aggregation-enhanced multi-mode imaging and photothermal therapy of metastatic prostate cancer. Chinese Chemical Letters, 2025, 36(2): 109765-. doi: 10.1016/j.cclet.2024.109765

    8. [8]

      Qiongqiong WanYanan XiaoGuifang FengXin DongWenjing NieMing GaoQingtao MengSuming Chen . Visible-light-activated aziridination reaction enables simultaneous resolving of C=C bond location and the sn-position isomers in lipids. Chinese Chemical Letters, 2024, 35(4): 108775-. doi: 10.1016/j.cclet.2023.108775

    9. [9]

      Yi LuoLin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648

    10. [10]

      Guoju GuoXufeng LiJie MaYongjia ShiJian LvDaoshan Yang . Photocatalyst/metal-free sequential C–N/C–S bond formation: Synthesis of S-arylisothioureas via photoinduced EDA complex activation. Chinese Chemical Letters, 2024, 35(11): 110024-. doi: 10.1016/j.cclet.2024.110024

    11. [11]

      Peng WangJianjun WangNi SongXin ZhouMing Li . Radical dehydroxymethylative fluorination of aliphatic primary alcohols and diverse functionalization of α-fluoroimides via BF3·OEt2-catalyzed C‒F bond activation. Chinese Chemical Letters, 2025, 36(1): 109748-. doi: 10.1016/j.cclet.2024.109748

Metrics
  • PDF Downloads(0)
  • Abstract views(918)
  • HTML views(15)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return