Citation:
Nasser Goudarzi, Mohammad Goodarzi, M. Arab Chamjangali, M. H. Fatemi. Application of a new SPA-SVM coupling method for QSPR study of electrophoretic mobilities of some organic and inorganic compounds[J]. Chinese Chemical Letters,
;2013, 24(10): 904-908.
-
In this work, two chemometrics methods are applied for the modeling and prediction of electrophoretic mobilities of some organic and inorganic compounds. The successive projection algorithm, feature selection (SPA) strategy, is used as the descriptor selection and model development method. Then, the support vector machine (SVM) and multiple linear regression (MLR) model are utilized to construct the non-linear and linear quantitative structure-property relationship models. The results obtained using the SVM model are compared with those obtained using MLR reveal that the SVM model is of much better predictive value than the MLR one. The root-mean-square errors for the training set and the test set for the SVM model were 0.1911 and 0.2569, respectively, while by the MLR model, they were 0.4908 and 0.6494, respectively. The results show that the SVM model drastically enhances the ability of prediction in QSPR studies and is superior to the MLR model.
-
-
-
[1]
[1] D.A. Kevin, Overview of capillary electrophoresis and capillary electrochromatography, J. Chromatogr. A 856 (1999) 443-463.
-
[2]
[2] R.L. Kay, The current state of our understanding of ionic mobilities, Pure Appl. Chem. 63 (1991) 1393-1399.
-
[3]
[3] A. Yasri, D. Hartsough, Toward an optimal procedure for variable selection and QSAR model building, J. Chem. Inf. Comput. Sci. 41 (2001) 1218-1227.
-
[4]
[4] D. Barŕon Jimenez-Lozano, J. Barbosa, Prediction of electrophoretic behaviour of a series of quinolones in aqueous methanol, J. Chromatogr. A 919 (2001) 395-406.
-
[5]
[5] M. Jalali-Heravi, Z. Garkani-Nejad, Prediction of electrophoretic mobilities of sulfonamides in capillary zone electrophoresis using artificial neural networks, J. Chromatogr. A 927 (2001) 211-218.
-
[6]
[6] Q.F. Li, L.J. Dong, R.P. Jia, et al., Development of a quantitative structure-property relationship model for predicting the electrophoretic mobilities, Comput. Chem. 26 (2002) 245-251.
-
[7]
[7] A. Jouyban, B.H. Yousefi, Quantitative structure property relationship study of electrophoretic mobility of analytes in capillary zone electrophoresis, Comput. Biol. Chem. 27 (2003) 297-303.
-
[8]
[8] N. Goudarzi, M. Goodarzi, Prediction of the logarithmic of partition coefficients (log P) of some organic compounds by least square-support vector machine (LSSVM), Mol. Phys. 106 (2008) 2525-2535.
-
[9]
[9] N. Goudarzi, M. Goodarzi, Prediction of the acidic dissociation constant (pKa) of some organic compounds using linear and nonlinear QSPR methods, Mol. Phys. 107 (2009) 1495-1503.
-
[10]
[10] M.H. Fatemi, N. Goudarzi, Quantitative structure property relationship study of the electrophoretic mobilities of some benzoic acids derivatives in different carrier electrolyte compositions, Electrophoresis 26 (2005) 2968-2973.
-
[11]
[11] N. Goudarzi, M. Goodarzi, QSPR models for prediction of half wave potentials of some chlorinated organic compounds using SR-PLS and GA-PLS methods, Mol. Phys. 107 (2009) 1739-1744.
-
[12]
[12] N. Goudarzi, M. Goodarzi, Prediction of the vapor pressure of some halogenated methyl-phenyl ether (anisole) compounds using linear and nonlinear QSPR methods, Mol. Phys. 107 (2009) 1615-1620.
-
[13]
[13] Z. Elmi, K. Faez, M. Goodarzi, N. Goudarzi, Feature selection method based on fuzzy entropy for regression in QSAR studies, Mol. Phys. 107 (2009) 1787-1798.
-
[14]
[14] N. Goudarzi, M. Goodarzi, M.C.U. Araujo, R.K.H. Galvao, QSPR modeling of soil sorption coefficients (KOC) of pesticides using SPA-ANN and SPA-MLR, J. Agric. Food Chem. 57 (2009) 7153-7158.
-
[15]
[15] N. Goudarzi, M.H. Fatemi, A. Samadi, Quantitative structure-properties relationship study of the 29Si-NMR chemical shifts of some silicate species, Spectrosc. Lett. 42 (2009) 186-193.
-
[16]
[16] M. Goodarzi, M.P. Freitas, Feature selection and linear/nonlinear regression methods for the accurate prediction of glycogen synthase kinase-3B inhibitory activities, QSAR Comb. Sci. 27 (2008) 1092-1098.
-
[17]
[17] M. Goodarzi, M.P. Freitas, Predicting boiling points of aliphatic alcohols through multivariate image analysis applied to quantitative structure-property relationships, J. Phys. Chem. A 112 (2008) 11263-11265.
-
[18]
[18] M. Goodarzi, M.P. Freitas, On the use of PLS and N-PLS inMIA-QSAR: azole antifungals, Chemom. Intell. Lab. Syst. 96 (2008) 59-62.
-
[19]
[19] H. Golmohammadi, M.H. Fatemi, Artificial neural network prediction of retention factors of some benzene derivatives and heterocyclic compounds in micellarelectrokinetic chromatography, Electrophoresis 26 (2005) 3438-3444.
-
[20]
[20] M. Goodarzi, M.P. Freitas, R. Jensen, Feature selection and linear/nonlinear regression methods for the accurate prediction of glycogen synthase kinase-3beta inhibitory activities, J. Chem. Inf. Model 49 (2009) 824-832.
-
[21]
[21] M. Goodarzi, P.R. Duchowicz, C.H. Wu, F.M. Fernández, E.A. Castro, J. Chem. Inf. Model 49 (2009) 1475-1485.
-
[22]
[22] N. Goudarzi, M. Goodarzi, M. Arab Chamjangali, Prediction of inhibition effect of some aliphatic and aromatic organic compounds using QSAR method, J. Environ. Chem. Ecotoxicol. 2 (2010) 47-51.
-
[23]
[23] N. Goudarzi, P. Kalhor, Quantitative structure-retention index relationship (QSRIR) study of monomethylalkanes on the methylsilicone OV-1 stationary phase, Anal. Chem. Lett. 2 (2012) 13-26.
-
[24]
[24] N. Goudarzi, M. Goodarzi, Application of successive projections algorithm(SPA) as a variable selection in a QSPR study to predict the octanol/water partition coefficients (Kow) of some halogenated organic compounds, Anal. Methods 2 (2010) 758-764.
-
[25]
[25] N. Goudarzi, M. Goodarzi, T. Chen, QSAR prediction of HIV inhibition activity of styrylquinoline derivatives by genetic algorithm coupled with multiple linear regressions, Med. Chem. Res. 21 (2012) 437-443.
-
[26]
[26] J. Hosseini, M. Nekoei, M. Mohammadhosseini, N. Goudarzi, Quantitative structure-activity relationship study of arylsulfonylpiperazine inhibitors of 11b-HSD1 by genetic algorithm-multiple linear regression, J. Appl. Res. Chem. 5 (2011) 5-17.
-
[27]
[27] M.C.U. Araujo, T.C.B. Saldanha, R.K.H. Galvão, et al., The successive projections algorithm for variable selection in spectroscopicmulticomponent analysis, Chemom. Intell. Lab. Syst., Lab. Inf. Manage. 57 (2001) 65-73.
-
[28]
[28] A.D.F. Heronides, E.S.O.N. Souza, V. Visani, et al., Simultaneous spectrometric determination of Cu2+, Mn2+ and Zn2+ in polivitaminic/polimineral drug using SPA and GA algorithms for variable selection, J. Braz. Chem. Soc. 16 (2005) 58-61.
-
[29]
[29] M.S. Di Nezio, M.F. Pistonesi, W.D. Fragoso, et al., Successive projections algorithm improving the multivariate simultaneous direct spectrophotometric determination of five phenolic compounds in sea water, Microchem. J. 85 (2007) 194-200.
-
[30]
[30] M. Grunhut, M.E. Centurión, W.D. Fragoso, et al., Flow-batch technique for the simultaneous enzymatic determination of levodopa and carbidopa in pharmaceuticals using PLS and successive projections algorithm, Talanta 75 (2008) 950-958.
-
[31]
[31] R.K.H. Galvão, M.F. Pimentel, M.C.U. Araujo, T. Yoneyama, V. Visani, Aspects of the successive projections algorithm for variable selection in multivariate calibration applied to plasma emission spectrometry, Anal. Chim. Acta 443 (2001) 107-115.
-
[32]
[32] F.A. Honorato, R.K.H. Galvão, M.F. Pimentel, et al., Robust modeling for multivariate calibration transfer by the successive projections algorithm, Chemom. Intell. Lab. Syst., Lab. Inf. Manage. 76 (2005) 65-72.
-
[33]
[33] M.C. Breitkreitz, I.M. Raimundo Jr., J.J.R. Rohwedder, et al., Determination of total sulfur in diesel fuel employing NIR spectroscopy and multivariate calibration, Analyst 128 (2003) 1204-1208.
-
[34]
[34] H.A.D. Dantas Filho, R.K.H. Galvão, M.C.U. Araújo, et al., A strategy for selecting calibration samples for multivariate modelling, Chemom. Intell. Lab. Syst., Lab. Inf. Manage. 72 (2004) 83-91.
-
[35]
[35] M.J.C. Pontes, R.K.H. Galvão, M.C.U. Araújo, et al., The successive projections algorithm for spectral variable selection in classification problems, Chemom. Intell. Lab. Syst. 78 (2005) 11-18.
-
[36]
[36] F.F. Gambarra-Neto, G. Marino, M.C.U. Araújo, et al., Classification of edible vegetable oils using square wave voltammetry with multivariate data, Talanta 77 (2009) 1660-1666.
-
[37]
[37] R.K.H. Galvão, M.C.U. Araújo, W.D. Fragoso, et al., A variable elimination method to improve the parsimony of MLR models using the successive projections algorithm, Chemom. Intell. Lab. Syst. 92 (2008) 83-91.
-
[38]
[38] R.K.H. Galvão, M.C.U. Araújo, E.C. Silva, et al., Cross-validation for the selection of spectral variables using the successive projections algorithm, J. Braz. Chem. Soc. 18 (2007) 1580-1584.
-
[39]
[39] R.K.H. Galvão, M.C.U. Araújo, Linear regression modeling: variable selection, in: S. Brown, R. Tauler, B. Walczak (Eds.), Comprehensive chemometrics, Elsevier, 2009.
-
[40]
[40] S.D. Noblitt, R.L. Mazzoleni, S.V. Hering, et al., Separation of common organic and inorganic anions in atmospheric aerosols using a piperazine buffer and capillary electrophoresis, J. Chromatogr. A 1154 (2007) 400-406.
-
[41]
[41] HyperChem Release 7, HyperCube, Inc., http://www.hyper.com.
-
[42]
[42] R. Todeschini, Milano Chemometrics and QSPR Group, http://www.disat.unimib.it/vhml.
-
[1]
-
-
-
[1]
Jing Chen , Peisi Xie , Pengfei Wu , Yu He , Zian Lin , Zongwei Cai . MALDI coupled with laser-postionization and trapped ion mobility spectrometry contribute to the enhanced detection of lipids in cancer cell spheroids. Chinese Chemical Letters, 2024, 35(4): 108895-. doi: 10.1016/j.cclet.2023.108895
-
[2]
Chaozheng He , Pei Shi , Donglin Pang , Zhanying Zhang , Long Lin , Yingchun Ding . First-principles study of the relationship between the formation of single atom catalysts and lattice thermal conductivity. Chinese Chemical Letters, 2024, 35(6): 109116-. doi: 10.1016/j.cclet.2023.109116
-
[3]
Xinyu Liu , Jialin Yang , Zonglin He , Jiaoyan Ai , Lina Song , Baohua Liu . Linear polyurethanes with excellent comprehensive properties from poly(ethylene carbonate) diol. Chinese Chemical Letters, 2025, 36(1): 110236-. doi: 10.1016/j.cclet.2024.110236
-
[4]
Ying Xu , Chengying Shen , Hailong Yuan , Wei Wu . Mapping multiple phases in curcumin binary solid dispersions by fluorescence contrasting. Chinese Chemical Letters, 2024, 35(9): 109324-. doi: 10.1016/j.cclet.2023.109324
-
[5]
Yuxin Xiao , Xiaowei Wang , Yutong Yin , Fangchao Yin , Jinchao Li , Zhiyuan Hou , Mashooq Khan , Rusong Zhao , Wenli Wu , Qiongzheng Hu . Distance-based lateral flow biosensor for the quantitative detection of bacterial endotoxin. Chinese Chemical Letters, 2024, 35(12): 109718-. doi: 10.1016/j.cclet.2024.109718
-
[6]
Zixing Xu , Ruiying Chen , Chuanming Hao , Qionghong Xie , Chunhui Deng , Nianrong Sun . Peptidome data-driven comprehensive individualized monitoring of membranous nephropathy with machine learning. Chinese Chemical Letters, 2024, 35(5): 108975-. doi: 10.1016/j.cclet.2023.108975
-
[7]
Yiwen Lin , Yijie Chen , Chunhui Deng , Nianrong Sun . Integration of resol/block-copolymer carbonization and machine learning: A convenient approach for precise monitoring of glycan-associated disorders. Chinese Chemical Letters, 2024, 35(12): 109813-. doi: 10.1016/j.cclet.2024.109813
-
[8]
Jinli Chen , Shouquan Feng , Tianqi Yu , Yongjin Zou , Huan Wen , Shibin Yin . Modulating Metal-Support Interaction Between Pt3Ni and Unsaturated WOx to Selectively Regulate the ORR Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100168-100168. doi: 10.1016/j.cjsc.2023.100168
-
[9]
Dong Sui , Jiayi Liu . Constriction-susceptible lithium support for fast cycling of solid-state lithium metal battery. Chinese Chemical Letters, 2025, 36(2): 110417-. doi: 10.1016/j.cclet.2024.110417
-
[10]
Xianping Du , Ying Huang , Chen Chen , Zhenhe Feng , Meng Zong . Encapsulating Si particles in multiple carbon shells with pore-rich for constructing free-standing anodes of lithium storage. Chinese Chemical Letters, 2024, 35(12): 109990-. doi: 10.1016/j.cclet.2024.109990
-
[11]
Yao-Hua Gu , Yu Chen , Qing Li , Neng-Bin Xie , Xue Xing , Jun Xiong , Min Hu , Tian-Zhou Li , Ke-Yu Yuan , Yu Liu , Tang Tang , Fan He , Bi-Feng Yuan . Metabolome profiling by widely-targeted metabolomics and biomarker panel selection using machine-learning for patients in different stages of chronic kidney disease. Chinese Chemical Letters, 2024, 35(11): 109627-. doi: 10.1016/j.cclet.2024.109627
-
[12]
Jin Long , Xingqun Zheng , Bin Wang , Chenzhong Wu , Qingmei Wang , Lishan Peng . Improving the electrocatalytic performances of Pt-based catalysts for oxygen reduction reaction via strong interactions with single-CoN4-rich carbon support. Chinese Chemical Letters, 2024, 35(5): 109354-. doi: 10.1016/j.cclet.2023.109354
-
[13]
Xingxing Jiang , Yuxin Zhao , Yan Kong , Jianju Sun , Shangzhao Feng , Xin Lu , Qi Hu , Hengpan Yang , Chuanxin He . Support effect and confinement effect of porous carbon loaded tin dioxide nanoparticles in high-performance CO2 electroreduction towards formate. Chinese Chemical Letters, 2025, 36(1): 109555-. doi: 10.1016/j.cclet.2024.109555
-
[14]
Tong Su , Yue Wang , Qizhen Zhu , Mengyao Xu , Ning Qiao , Bin Xu . Multiple conductive network for KTi2(PO4)3 anode based on MXene as a binder for high-performance potassium storage. Chinese Chemical Letters, 2024, 35(8): 109191-. doi: 10.1016/j.cclet.2023.109191
-
[15]
Yi Cao , Xiaojiao Ge , Yuanyuan Wei , Lulu He , Aiguo Wu , Juan Li . Tumor microenvironment-activatable neuropeptide-drug conjugates enhanced tumor penetration and inhibition via multiple delivery pathways and calcium deposition. Chinese Chemical Letters, 2024, 35(4): 108672-. doi: 10.1016/j.cclet.2023.108672
-
[16]
Xin Jiang , Han Jiang , Yimin Tang , Huizhu Zhang , Libin Yang , Xiuwen Wang , Bing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415
-
[17]
Runze Liu , Yankai Bian , Weili Dai . Qualitative and quantitative analysis of Brønsted and Lewis acid sites in zeolites: A combined probe-assisted 1H MAS NMR and NH3-TPD investigation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100250-100250. doi: 10.1016/j.cjsc.2024.100250
-
[18]
Chao Ma , Cong Lin , Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209
-
[19]
Yuhang Li , Yang Ling , Yanhang Ma . Application of three-dimensional electron diffraction in structure determination of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100237-100237. doi: 10.1016/j.cjsc.2024.100237
-
[20]
Hai-Ling Wang , Zhong-Hong Zhu , Hua-Hong Zou . Structure and assembly mechanism of high-nuclear lanthanide-oxo clusters. Chinese Journal of Structural Chemistry, 2024, 43(9): 100372-100372. doi: 10.1016/j.cjsc.2024.100372
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(646)
- HTML views(12)