Citation: Nasser Goudarzi, Mohammad Goodarzi, M. Arab Chamjangali, M. H. Fatemi. Application of a new SPA-SVM coupling method for QSPR study of electrophoretic mobilities of some organic and inorganic compounds[J]. Chinese Chemical Letters, ;2013, 24(10): 904-908. shu

Application of a new SPA-SVM coupling method for QSPR study of electrophoretic mobilities of some organic and inorganic compounds

  • Corresponding author: Nasser Goudarzi, 
  • Received Date: 11 March 2013
    Available Online: 28 May 2013

  • In this work, two chemometrics methods are applied for the modeling and prediction of electrophoretic mobilities of some organic and inorganic compounds. The successive projection algorithm, feature selection (SPA) strategy, is used as the descriptor selection and model development method. Then, the support vector machine (SVM) and multiple linear regression (MLR) model are utilized to construct the non-linear and linear quantitative structure-property relationship models. The results obtained using the SVM model are compared with those obtained using MLR reveal that the SVM model is of much better predictive value than the MLR one. The root-mean-square errors for the training set and the test set for the SVM model were 0.1911 and 0.2569, respectively, while by the MLR model, they were 0.4908 and 0.6494, respectively. The results show that the SVM model drastically enhances the ability of prediction in QSPR studies and is superior to the MLR model.
  • 加载中
    1. [1]

      [1] D.A. Kevin, Overview of capillary electrophoresis and capillary electrochromatography, J. Chromatogr. A 856 (1999) 443-463.

    2. [2]

      [2] R.L. Kay, The current state of our understanding of ionic mobilities, Pure Appl. Chem. 63 (1991) 1393-1399.

    3. [3]

      [3] A. Yasri, D. Hartsough, Toward an optimal procedure for variable selection and QSAR model building, J. Chem. Inf. Comput. Sci. 41 (2001) 1218-1227.

    4. [4]

      [4] D. Barŕon Jimenez-Lozano, J. Barbosa, Prediction of electrophoretic behaviour of a series of quinolones in aqueous methanol, J. Chromatogr. A 919 (2001) 395-406.

    5. [5]

      [5] M. Jalali-Heravi, Z. Garkani-Nejad, Prediction of electrophoretic mobilities of sulfonamides in capillary zone electrophoresis using artificial neural networks, J. Chromatogr. A 927 (2001) 211-218.

    6. [6]

      [6] Q.F. Li, L.J. Dong, R.P. Jia, et al., Development of a quantitative structure-property relationship model for predicting the electrophoretic mobilities, Comput. Chem. 26 (2002) 245-251.

    7. [7]

      [7] A. Jouyban, B.H. Yousefi, Quantitative structure property relationship study of electrophoretic mobility of analytes in capillary zone electrophoresis, Comput. Biol. Chem. 27 (2003) 297-303.

    8. [8]

      [8] N. Goudarzi, M. Goodarzi, Prediction of the logarithmic of partition coefficients (log P) of some organic compounds by least square-support vector machine (LSSVM), Mol. Phys. 106 (2008) 2525-2535.

    9. [9]

      [9] N. Goudarzi, M. Goodarzi, Prediction of the acidic dissociation constant (pKa) of some organic compounds using linear and nonlinear QSPR methods, Mol. Phys. 107 (2009) 1495-1503.

    10. [10]

      [10] M.H. Fatemi, N. Goudarzi, Quantitative structure property relationship study of the electrophoretic mobilities of some benzoic acids derivatives in different carrier electrolyte compositions, Electrophoresis 26 (2005) 2968-2973.

    11. [11]

      [11] N. Goudarzi, M. Goodarzi, QSPR models for prediction of half wave potentials of some chlorinated organic compounds using SR-PLS and GA-PLS methods, Mol. Phys. 107 (2009) 1739-1744.

    12. [12]

      [12] N. Goudarzi, M. Goodarzi, Prediction of the vapor pressure of some halogenated methyl-phenyl ether (anisole) compounds using linear and nonlinear QSPR methods, Mol. Phys. 107 (2009) 1615-1620.

    13. [13]

      [13] Z. Elmi, K. Faez, M. Goodarzi, N. Goudarzi, Feature selection method based on fuzzy entropy for regression in QSAR studies, Mol. Phys. 107 (2009) 1787-1798.

    14. [14]

      [14] N. Goudarzi, M. Goodarzi, M.C.U. Araujo, R.K.H. Galvao, QSPR modeling of soil sorption coefficients (KOC) of pesticides using SPA-ANN and SPA-MLR, J. Agric. Food Chem. 57 (2009) 7153-7158.

    15. [15]

      [15] N. Goudarzi, M.H. Fatemi, A. Samadi, Quantitative structure-properties relationship study of the 29Si-NMR chemical shifts of some silicate species, Spectrosc. Lett. 42 (2009) 186-193.

    16. [16]

      [16] M. Goodarzi, M.P. Freitas, Feature selection and linear/nonlinear regression methods for the accurate prediction of glycogen synthase kinase-3B inhibitory activities, QSAR Comb. Sci. 27 (2008) 1092-1098.

    17. [17]

      [17] M. Goodarzi, M.P. Freitas, Predicting boiling points of aliphatic alcohols through multivariate image analysis applied to quantitative structure-property relationships, J. Phys. Chem. A 112 (2008) 11263-11265.

    18. [18]

      [18] M. Goodarzi, M.P. Freitas, On the use of PLS and N-PLS inMIA-QSAR: azole antifungals, Chemom. Intell. Lab. Syst. 96 (2008) 59-62.

    19. [19]

      [19] H. Golmohammadi, M.H. Fatemi, Artificial neural network prediction of retention factors of some benzene derivatives and heterocyclic compounds in micellarelectrokinetic chromatography, Electrophoresis 26 (2005) 3438-3444.

    20. [20]

      [20] M. Goodarzi, M.P. Freitas, R. Jensen, Feature selection and linear/nonlinear regression methods for the accurate prediction of glycogen synthase kinase-3beta inhibitory activities, J. Chem. Inf. Model 49 (2009) 824-832.

    21. [21]

      [21] M. Goodarzi, P.R. Duchowicz, C.H. Wu, F.M. Fernández, E.A. Castro, J. Chem. Inf. Model 49 (2009) 1475-1485.

    22. [22]

      [22] N. Goudarzi, M. Goodarzi, M. Arab Chamjangali, Prediction of inhibition effect of some aliphatic and aromatic organic compounds using QSAR method, J. Environ. Chem. Ecotoxicol. 2 (2010) 47-51.

    23. [23]

      [23] N. Goudarzi, P. Kalhor, Quantitative structure-retention index relationship (QSRIR) study of monomethylalkanes on the methylsilicone OV-1 stationary phase, Anal. Chem. Lett. 2 (2012) 13-26.

    24. [24]

      [24] N. Goudarzi, M. Goodarzi, Application of successive projections algorithm(SPA) as a variable selection in a QSPR study to predict the octanol/water partition coefficients (Kow) of some halogenated organic compounds, Anal. Methods 2 (2010) 758-764.

    25. [25]

      [25] N. Goudarzi, M. Goodarzi, T. Chen, QSAR prediction of HIV inhibition activity of styrylquinoline derivatives by genetic algorithm coupled with multiple linear regressions, Med. Chem. Res. 21 (2012) 437-443.

    26. [26]

      [26] J. Hosseini, M. Nekoei, M. Mohammadhosseini, N. Goudarzi, Quantitative structure-activity relationship study of arylsulfonylpiperazine inhibitors of 11b-HSD1 by genetic algorithm-multiple linear regression, J. Appl. Res. Chem. 5 (2011) 5-17.

    27. [27]

      [27] M.C.U. Araujo, T.C.B. Saldanha, R.K.H. Galvão, et al., The successive projections algorithm for variable selection in spectroscopicmulticomponent analysis, Chemom. Intell. Lab. Syst., Lab. Inf. Manage. 57 (2001) 65-73.

    28. [28]

      [28] A.D.F. Heronides, E.S.O.N. Souza, V. Visani, et al., Simultaneous spectrometric determination of Cu2+, Mn2+ and Zn2+ in polivitaminic/polimineral drug using SPA and GA algorithms for variable selection, J. Braz. Chem. Soc. 16 (2005) 58-61.

    29. [29]

      [29] M.S. Di Nezio, M.F. Pistonesi, W.D. Fragoso, et al., Successive projections algorithm improving the multivariate simultaneous direct spectrophotometric determination of five phenolic compounds in sea water, Microchem. J. 85 (2007) 194-200.

    30. [30]

      [30] M. Grunhut, M.E. Centurión, W.D. Fragoso, et al., Flow-batch technique for the simultaneous enzymatic determination of levodopa and carbidopa in pharmaceuticals using PLS and successive projections algorithm, Talanta 75 (2008) 950-958.

    31. [31]

      [31] R.K.H. Galvão, M.F. Pimentel, M.C.U. Araujo, T. Yoneyama, V. Visani, Aspects of the successive projections algorithm for variable selection in multivariate calibration applied to plasma emission spectrometry, Anal. Chim. Acta 443 (2001) 107-115.

    32. [32]

      [32] F.A. Honorato, R.K.H. Galvão, M.F. Pimentel, et al., Robust modeling for multivariate calibration transfer by the successive projections algorithm, Chemom. Intell. Lab. Syst., Lab. Inf. Manage. 76 (2005) 65-72.

    33. [33]

      [33] M.C. Breitkreitz, I.M. Raimundo Jr., J.J.R. Rohwedder, et al., Determination of total sulfur in diesel fuel employing NIR spectroscopy and multivariate calibration, Analyst 128 (2003) 1204-1208.

    34. [34]

      [34] H.A.D. Dantas Filho, R.K.H. Galvão, M.C.U. Araújo, et al., A strategy for selecting calibration samples for multivariate modelling, Chemom. Intell. Lab. Syst., Lab. Inf. Manage. 72 (2004) 83-91.

    35. [35]

      [35] M.J.C. Pontes, R.K.H. Galvão, M.C.U. Araújo, et al., The successive projections algorithm for spectral variable selection in classification problems, Chemom. Intell. Lab. Syst. 78 (2005) 11-18.

    36. [36]

      [36] F.F. Gambarra-Neto, G. Marino, M.C.U. Araújo, et al., Classification of edible vegetable oils using square wave voltammetry with multivariate data, Talanta 77 (2009) 1660-1666.

    37. [37]

      [37] R.K.H. Galvão, M.C.U. Araújo, W.D. Fragoso, et al., A variable elimination method to improve the parsimony of MLR models using the successive projections algorithm, Chemom. Intell. Lab. Syst. 92 (2008) 83-91.

    38. [38]

      [38] R.K.H. Galvão, M.C.U. Araújo, E.C. Silva, et al., Cross-validation for the selection of spectral variables using the successive projections algorithm, J. Braz. Chem. Soc. 18 (2007) 1580-1584.

    39. [39]

      [39] R.K.H. Galvão, M.C.U. Araújo, Linear regression modeling: variable selection, in: S. Brown, R. Tauler, B. Walczak (Eds.), Comprehensive chemometrics, Elsevier, 2009.

    40. [40]

      [40] S.D. Noblitt, R.L. Mazzoleni, S.V. Hering, et al., Separation of common organic and inorganic anions in atmospheric aerosols using a piperazine buffer and capillary electrophoresis, J. Chromatogr. A 1154 (2007) 400-406.

    41. [41]

      [41] HyperChem Release 7, HyperCube, Inc., http://www.hyper.com.

    42. [42]

      [42] R. Todeschini, Milano Chemometrics and QSPR Group, http://www.disat.unimib.it/vhml.

  • 加载中
    1. [1]

      Jing ChenPeisi XiePengfei WuYu HeZian LinZongwei Cai . MALDI coupled with laser-postionization and trapped ion mobility spectrometry contribute to the enhanced detection of lipids in cancer cell spheroids. Chinese Chemical Letters, 2024, 35(4): 108895-. doi: 10.1016/j.cclet.2023.108895

    2. [2]

      Chaozheng HePei ShiDonglin PangZhanying ZhangLong LinYingchun Ding . First-principles study of the relationship between the formation of single atom catalysts and lattice thermal conductivity. Chinese Chemical Letters, 2024, 35(6): 109116-. doi: 10.1016/j.cclet.2023.109116

    3. [3]

      Xinyu LiuJialin YangZonglin HeJiaoyan AiLina SongBaohua Liu . Linear polyurethanes with excellent comprehensive properties from poly(ethylene carbonate) diol. Chinese Chemical Letters, 2025, 36(1): 110236-. doi: 10.1016/j.cclet.2024.110236

    4. [4]

      Ying XuChengying ShenHailong YuanWei Wu . Mapping multiple phases in curcumin binary solid dispersions by fluorescence contrasting. Chinese Chemical Letters, 2024, 35(9): 109324-. doi: 10.1016/j.cclet.2023.109324

    5. [5]

      Yuxin XiaoXiaowei WangYutong YinFangchao YinJinchao LiZhiyuan HouMashooq KhanRusong ZhaoWenli WuQiongzheng Hu . Distance-based lateral flow biosensor for the quantitative detection of bacterial endotoxin. Chinese Chemical Letters, 2024, 35(12): 109718-. doi: 10.1016/j.cclet.2024.109718

    6. [6]

      Zixing XuRuiying ChenChuanming HaoQionghong XieChunhui DengNianrong Sun . Peptidome data-driven comprehensive individualized monitoring of membranous nephropathy with machine learning. Chinese Chemical Letters, 2024, 35(5): 108975-. doi: 10.1016/j.cclet.2023.108975

    7. [7]

      Yiwen LinYijie ChenChunhui DengNianrong Sun . Integration of resol/block-copolymer carbonization and machine learning: A convenient approach for precise monitoring of glycan-associated disorders. Chinese Chemical Letters, 2024, 35(12): 109813-. doi: 10.1016/j.cclet.2024.109813

    8. [8]

      Jinli Chen Shouquan Feng Tianqi Yu Yongjin Zou Huan Wen Shibin Yin . Modulating Metal-Support Interaction Between Pt3Ni and Unsaturated WOx to Selectively Regulate the ORR Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100168-100168. doi: 10.1016/j.cjsc.2023.100168

    9. [9]

      Dong SuiJiayi Liu . Constriction-susceptible lithium support for fast cycling of solid-state lithium metal battery. Chinese Chemical Letters, 2025, 36(2): 110417-. doi: 10.1016/j.cclet.2024.110417

    10. [10]

      Xianping DuYing HuangChen ChenZhenhe FengMeng Zong . Encapsulating Si particles in multiple carbon shells with pore-rich for constructing free-standing anodes of lithium storage. Chinese Chemical Letters, 2024, 35(12): 109990-. doi: 10.1016/j.cclet.2024.109990

    11. [11]

      Yao-Hua GuYu ChenQing LiNeng-Bin XieXue XingJun XiongMin HuTian-Zhou LiKe-Yu YuanYu LiuTang TangFan HeBi-Feng Yuan . Metabolome profiling by widely-targeted metabolomics and biomarker panel selection using machine-learning for patients in different stages of chronic kidney disease. Chinese Chemical Letters, 2024, 35(11): 109627-. doi: 10.1016/j.cclet.2024.109627

    12. [12]

      Jin LongXingqun ZhengBin WangChenzhong WuQingmei WangLishan Peng . Improving the electrocatalytic performances of Pt-based catalysts for oxygen reduction reaction via strong interactions with single-CoN4-rich carbon support. Chinese Chemical Letters, 2024, 35(5): 109354-. doi: 10.1016/j.cclet.2023.109354

    13. [13]

      Xingxing JiangYuxin ZhaoYan KongJianju SunShangzhao FengXin LuQi HuHengpan YangChuanxin He . Support effect and confinement effect of porous carbon loaded tin dioxide nanoparticles in high-performance CO2 electroreduction towards formate. Chinese Chemical Letters, 2025, 36(1): 109555-. doi: 10.1016/j.cclet.2024.109555

    14. [14]

      Tong SuYue WangQizhen ZhuMengyao XuNing QiaoBin Xu . Multiple conductive network for KTi2(PO4)3 anode based on MXene as a binder for high-performance potassium storage. Chinese Chemical Letters, 2024, 35(8): 109191-. doi: 10.1016/j.cclet.2023.109191

    15. [15]

      Yi CaoXiaojiao GeYuanyuan WeiLulu HeAiguo WuJuan Li . Tumor microenvironment-activatable neuropeptide-drug conjugates enhanced tumor penetration and inhibition via multiple delivery pathways and calcium deposition. Chinese Chemical Letters, 2024, 35(4): 108672-. doi: 10.1016/j.cclet.2023.108672

    16. [16]

      Xin JiangHan JiangYimin TangHuizhu ZhangLibin YangXiuwen WangBing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415

    17. [17]

      Runze Liu Yankai Bian Weili Dai . Qualitative and quantitative analysis of Brønsted and Lewis acid sites in zeolites: A combined probe-assisted 1H MAS NMR and NH3-TPD investigation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100250-100250. doi: 10.1016/j.cjsc.2024.100250

    18. [18]

      Chao Ma Cong Lin Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209

    19. [19]

      Yuhang Li Yang Ling Yanhang Ma . Application of three-dimensional electron diffraction in structure determination of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100237-100237. doi: 10.1016/j.cjsc.2024.100237

    20. [20]

      Hai-Ling Wang Zhong-Hong Zhu Hua-Hong Zou . Structure and assembly mechanism of high-nuclear lanthanide-oxo clusters. Chinese Journal of Structural Chemistry, 2024, 43(9): 100372-100372. doi: 10.1016/j.cjsc.2024.100372

Metrics
  • PDF Downloads(0)
  • Abstract views(647)
  • HTML views(12)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return