Citation: Shou-Xin Wang, Zhen Fang, Zhi-Jin Fan, Dun Wang, Yue-Dong Li, Xiao-Tian Ji, Xue-Wen Hua, Yun Huang, Tatiana A. Kalinina, Vasiliy A. Bakulev, Yury Yu. Morzherin. Synthesis of tetrazole containing 1,2,3-thiadiazole derivatives via U-4CR and their anti-TMV activity[J]. Chinese Chemical Letters, ;2013, 24(10): 889-892.
-
A series of novel tetrazole containing 1,2,3-thiadiazole derivatives were designed and synthesized via Ugi reaction. Their structures were confirmed by melting points, IR, 1H NMR, and HRMS (ESI). Preliminary bioassay indicated that most target compounds exhibited very good direct anti-TMV activity at 100 μg/mL, which was equal to or higher than that of ribavirin. Among them, compounds 4b, 4c and 4i also showed equivalent protection effect to ribavirin in vivo at 100 μg/mL.
-
Keywords:
- 1,2,3-Thiadiazole,
- Tetrazole,
- Anti-TMV activity,
- Ugi reaction
-
-
[1]
[1] R. Tripathy, A. Ghose, J. Singh, et al., 1,2,3-Thiadiazole substituted pyrazolones as potent KDR/VEGFR-2 kinase inhibitors, Bioorg. Med. Chem. Lett. 17 (2007) 1793-1798.
-
[2]
[2] W.L. Dong, Z.X. Liu, X.H. Liu, Z.M. Li, W.G. Zhao, Synthesis and antiviral activity of new acrylamide derivatives containing 1,2,3-thiadiazole as inhibitors of hepatitis B virus replication, Eur. J. Med. Chem. 45 (2010) 1919-1926.
-
[3]
[3] Z.J. Fan, Z.K. Yang, H.K. Zhang, et al., Synthesis, crystal structure, and biological activity of 4-methyl-1,2,3-thiadiazole-containing 1,2,4-triazolo[3,4-b][1,3,4]thiadiazoles, J. Agric. Food Chem. 58 (2010) 2630-2636.
-
[4]
[4] X. Zuo, N. Mi, Z.J. Fan, et al., Synthesis of 4-methyl-1, 2,3-thiadiazole derivatives via Ugi reaction and their biological activities, J. Agric. Food Chem. 58 (2010) 2755-2762.
-
[5]
[5] V. Padmavathi, K. Mahesh, A.V. Nagendra Mohan, A. Padmaja, Synthesis and bioassay of oxazolyl/thiazolyl selenadiazoles, thiadiazoles and diazaphospholes, Chem. Pharm. Bull. 57 (2009) 561-566.
-
[6]
[6] H. Wang, Z.K. Yang, Z.J. Fan, et al., Synthesis and insecticidal activity of N-tertbutyl-N,N'-diacylhydrazines containing 1,2,3-thiadiazoles, J. Agric. Food Chem. 59 (2011) 628-634.
-
[7]
[7] M. Yasuda, M. Kusajima, M. Nakajima, et al., Thiadiazole carboxylic acid moiety of tiadinil, SV-03, induces systemic acquired resistance in tobacco without salicylic acid accumulation, J. Pestic. Sci. 31 (2006) 329-334.
-
[8]
[8] Z.J. Fan, Y.W. Ai, J.Y. Chen, et al., Preparation of BTH standard and HPLC analysis of Bion 50%WG, J. Sichuan Normal Univ. (Nat. Sci.) 28 (2005) 608-610.
-
[9]
[9] Z.J. Fan, Z.G. Shi, H.K. Zhang, et al., Synthesis and biological activity evaluation of 1,2,3-thiadiazole derivatives as potential elicitors with highly systemic acquired resistance, J. Agric. Food Chem. 57 (2009) 4279-4286.
-
[10]
[10] Q.S. Du, W.P. Zhu, Z.J. Zhao, X.H. Qian, Y.F. Xu, Novel benzo-1,2,3-thiadiazole-7-carboxylate derivatives as plant activators and the development of their agricultural applications, J. Agric. Food Chem. 60 (2012) 346-353.
-
[11]
[11] W.T. Mao, H. Zhao, Z.J. Fan, et al.,A.B. Vasiliy, Synthesis and bioactivity of N-tertbutyl-N'-acyl-5-methyl-1,2,3-thiadiazole-4-carbohydrazides, Chin. Chem. Lett. 23 (2012) 1233-1236.
-
[12]
[12] S.D. Diwakar, S.S. Bhagwat, M.S. Shingare, C.H. Gill, Substituted 3-((Z)-2-(4-nitrophenyl)-2-(1H-tetrazol-5-yl) vinyl)-4H-chromen-4-ones as novel anti-MRSA agents: synthesis, SAR, and in-vitro assessment, Bioorg. Med. Chem. Lett. 18 (2008) 4678-4681.
-
[13]
[13] K.S. Yeung, Z. Qiu, Z. Yang, et al., Inhibitors of HIV-1 attachment. Part 9. An assessment of oral prodrug approaches to improve the plasma exposure of a tetrazole-containing derivative, Bioorg. Med. Chem. Lett. 23 (2013) 209-212.
-
[14]
[14] Y.P. Luo, Q. Gong, Q. Chen, G.F. Yang, Synthesis and herbicidal activities of tetrazolinone derivatives containing oxime ether, Chin. J. Org. Chem. 28 (2008) 1561-1565.
-
[15]
[15] M. Bertinaria, M.A. Shaikh, C. Buccellati, et al., Designing multitarget anti-inflammatory agents: chemical modulation of the lumiracoxib structure toward dual thromboxane antagonists-COX-2 inhibitors, ChemMedChem 7 (2012) 1647-1660.
-
[16]
[16] R. Romagnoli, P.G. Baraldi, M.K. Salvador, et al., Synthesis and evaluation of 1,5-disubstituted tetrazoles as rigid analogues of combretastatin A-4 with potent antiproliferative and antitumor activity, J. Med. Chem. 55 (2012) 475-488.
-
[17]
[17] C. Trécant, A. Dlubala, P. George, et al., Synthesis and biological evaluation of analogues of M6G, Eur. J. Med. Chem. 46 (2011) 4035-4041.
-
[18]
[18] A.S. Gundugola, K.L. Chandra, E.M. Perchellet, et al., Synthesis and antiproliferative evaluation of 5-oxo and 5-thio derivatives of 1,4-diaryl tetrazoles, Bioorg. Med. Chem. Lett. 20 (2010) 3920-3924.
-
[19]
[19] S. Maeda, S. Komagawa, M. Uchiyama, K. Morokuma, Finding reaction pathways for multicomponent reactions: the passerini reaction is a four-component reaction, Angew. Chem. Int. Ed. 50 (2011) 644-649.
-
[20]
[20] W.H. Wang, X.M. Zou, X. Zhang, Y.Q. Fu, P. Xu, Solid-phase synthesis of PNA monomer by Ugi four-component condensation, Chin. Chem. Lett. 16 (2005) 585-588.
-
[21]
[21] S.S. Van Berkel, B.G.M. Bögels, M.A. Wijdeven, B. Westermann, F.P.J.T. Rutjes, Recent advances in asymmetric isocyanide-based multicomponent reactions, Eur. J. Org. Chem. (2012) 3543-3559.
-
[22]
[22] C. Kalinski, M. Umkehrer, S. Gonnard, et al., A new and versatile Ugi/SNAr synthesis of fused 4,5-dihydrotetrazolo[1,5-a] quinoxalines, Tetrahedron Lett. 47 (2006) 2041-2044.
-
[23]
[23] T. Zhao, A. Boltjes, E. Herdtweck, A. Dömling, Tritylamine as an ammonia surrogate in the ugi tetrazole synthesis, Org. Lett. 15 (2013) 639-641.
-
[24]
[24] F. Medda, C. Hulme, A facile and rapid route for the synthesis of novel 1,5-substituted tetrazole hydantoins and thiohydantoins via a TMSN3-Ugi/RNCX cyclization, Tetrahedron Lett. 53 (2012) 5593-5596.
-
[25]
[25] D.K. Yuan, D.Q. Zhang, R.X. Li, D.Q. Wang, X.L. Yang, Synthesis and anti-TMV activity of novel N-(pyrimidin-5-yl)-N0-phenylureas, Chin. Chem. Lett. 22 (2011) 18-20.
-
[26]
[26] Selected characteristic data for the target compounds. 4a: White solid; yield 59%; mp 75-76 ℃; 1H NMR (400 MHz, CDCl3): δ 0.93 (t, 3H, J = 7.6 Hz, propyl-CH3), 1.26-2.07 (m, 13H, propyl-CH2, 10cyclohexyl-H, NH), 2.45-2.62 (m, 2H, propyl-CH2), 2.65 (s, 3H, thiadiazole-CH3), 4.58-4.66 (m, 1H, cyclobutyl-CH), 5.76 (s, 1H, CH). HRMS: Calcd. for C14H23N7S (M+Na)+: 344.1628, Found: 344.1630; IR (KBr pellet press, cm 1): v3325, 2951, 2863, 1495, 1450, 1229, 1106, 1009, 809, 759. 4b: White solid; yield 47%; mp 96-97 ℃; 1H NMR (400 MHz, CDCl3):d 1.13 (t, 6H, J = 6.0 Hz, 2 isopropyl-CH3), 1.26-2.07 (m, 11H, 10 cyclohexyl-H, NH), 2.63 (s, 3H, thiadiazole-CH3), 2.64-2.71 (m, 1H, isopropyl-CH), 4.54-4.62 (m, 1H, cyclobutyl-CH), 5.83 (s, 1H, CH). HRMS: Calcd. for C14H23N7S (M+Na)+: 344.1628, Found: 344.1626; IR (KBr pellet press, cm 1): v 3276, 2934, 2857, 1501, 1451, 1241, 1126, 1009, 832. 4c: White solid; yield 51%; mp 96-97 ℃; 1H NMR (400 (M+H)+z, CDCl3): (0.43-0.54 (m, 4H, cyclopropyl-H), 1.33-2.05 (m, 11H, cyclohexyl-H, NH), 2.58 (s, 1H, cyclopropyl-CH), 2.66 (s, 3H, thiadiazole-CH3), 4.27-4.35 (m, 1H, cyclohexyl-CH), 5.58 (s, 1H, CH). HRMS: Calcd. for C14H21N7S (M+H)+: 320.1652, Found: 320.1657; IR (KBr pellet press, cm-1): n 3268, 2938, 2856, 1501, 1446, 1239, 1162, 1022, 801, 680. 4d: White solid; yield 53%; mp 88-89 ℃; 1H NMR (400 (M+H)+z, CDCl3): δ 1.31-2.17 (m, 17H, 5 cyclopropyl-H, 10 cyclohexyl-H, CH2), 2.63 (s, 3H, thiadiazole-CH3), 3.13 (s, 1H, NH), 4.53-4.60 (m, 1H, cyclohexyl-H), 5.72 (s, 1H, CH). HRMS: Calcd. for C15H23N7S (M+Na)+: 356.1628, Found: 356.1623; IR (KBr pellet press, cm 1): v3265, 2941, 2856, 1501, 1466, 1241, 1151, 1009, 810. 4e: White solid; yield 57%; mp 119-120 ℃; 1H NMR (400 (M+H)+z, CDCl3): δ 1.10 (s, 9H, 3t-butyl-CH3), 1.26-2.07 (m, 11H, 10 cyclohexyl-H, NH), 2.57 (s, 3H, thiadiazole-CH3), 4.37-4.45 (m, 1H, cyclohexyl-CH), 5.84 (s, 1H, CH). HRMS: Calcd. for C15H25N7S (M+Na)+: 358.1784, Found: 358.1787; IR (KBr pellet press, cm-1): v3327, 2938, 2865, 1453, 1231, 1103, 1076, 861, 741. 4f: White solid; yield 60%; mp 87-88 ℃; 1H NMR (400 MHz, CDCl3):d 1.26-2.17 (m, 17H, 6 cyclobutyl-H, 10 cyclohexyl-H, NH), 2.63 (s, 3H, thiadiazole-CH3), 3.11-3.14 (m, 1H, cyclobutyl-CH), 4.49-4.56 (m, 1H, cyclohexyl-CH), 5.70 (s, 1H, CH). HRMS: Calcd. for C15H23N7S (M+Na)+: 356.1628, Found: 356.1629; IR (KBr pellet press, cm 1): v3264, 2941, 2856, 1501, 1451, 1241, 1150, 1105, 1009, 809, 759. 4g: White solid; yield 58%; mp 122-123 ℃; 1H NMR (400 MHz, CDCl3):d 1.32-2.00 (m, 19H, 8 cyclopentyl-H, 10 cyclohexyl-H, NH), 2.63 (s, 3H, thiadiazole-CH3), 2.89-2.95 (m, 1H, cyclopentyl-CH), 4.53-4.60 (m, 1H, cyclohexyl-CH), 5.72 (s, 1H, CH). HRMS: Calcd. for C16H25N7S (M H) : 346.1819, Found: 346.1814; IR (KBr pellet press, cm 1): v3271, 2938, 2857, 1499, 1449, 1236, 1087, 1005, 844, 732. 4h: White solid; yield 47%; mp 98-99 ℃; 1H NMR (400 (M+H)+z, CDCl3):d 1.11-2.05 (m, 21H, 20 cyclohexyl-H, NH), 2.30-2.32 (m, 1H, cyclohexyl-CH), 2.62 (s, 3H, thiadiazole-CH3), 4.56-4.64 (m, 1H, cyclohexyl-H), 5.90 (s, 1H, CH). HRMS: Calcd. for C17H27N7S (M H) : 360.1976, Found: 360.1973; IR (KBr pellet press, cm 1): v3286, 2927, 2850, 1451, 1236, 1106, 1012, 824, 686. 4i: White solid; yield 55%; mp 96-97 ℃; 1H NMR(400 (M+H)+z, CDCl3):d 1.26-1.99 (m, 10H, cyclohexyl-H), 2.65 (s, 3H, thiadiazole-CH3), 4.35-4.41 (m, 1H, cyclohexyl-H), 4.72 (d, 1H, J = 8.0 Hz, NH), 6.32 (d, 1H, J = 8.0 Hz, CH), 6.66-7.09 (m, 4H, Ph-H). HRMS: Calcd. for C17H20FN7S (M+H)+: 374.1558, Found: 374.1555; IR (KBr pellet press, cm 1): v3401, 2936, 2860, 1620, 1527, 1453, 1251, 1191, 1057, 738. 4j: Pale yellow solid; yield 50%; mp 115-116 ℃; 1H NMR (400 (M+H)+z, CDCl3):d 1.26-1.99 (m, 10H, 10 cyclohexyl-H), 2.66 (s, 3H, thiadiazole-CH3), 4.27-4.33 (m, 1H, cyclohexyl-CH), 5.09 (d, 1H, J = 6.0 Hz, NH), 6.23 (d, 1H, J = 7.6 Hz, CH), 6.56 (d, 1H, J = 8.4 Hz, Ph-H), 6.70 (s, 1H, Ph-H), 6.85 (d, 1H, J = 8.4 Hz, Ph-H), 7.12 (t, 1H, J = 8.0 Hz, Ph-H). HRMS: Calcd. for C17H20ClN7S (M H) : 388.1117, Found: 388.1112; IR (KBr pellet press, cm 1): v3410, 2937, 2861, 1598, 1484, 1446, 1272, 1158, 1012, 845, 759. 4k: Pale yellow solid; yield 46%; mp 152-153 ℃; 1H NMR (400 MHz, CDCl3):d 1.26-2.01 (m, 10H, 10 cyclohexyl-H), 2.66 (s, 3H, thiadiazole-CH3), 4.25-4.32 (m, 1H, cyclohexyl-CH), 4.80 (d, 1H, J = 7.2 Hz, NH), 6.20 (d, 1H, J = 7.2 Hz, CH), 6.63 (d, 2H, J = 8.8 Hz, Ph-H), 7.18 (d, 2H, J = 8.4 Hz, Ph-H). HRMS: Calcd. for C17H20ClN7S (M H) : 388.1117, Found: 388.1119; IR (KBr pellet press, cm 1): v3285, 2944, 2856, 1598, 1497, 1442, 1296, 1245, 1103, 1011, 837. 4l: White solid; yield 45%; mp 149-150 (oC; 1H NMR (400 MHz, CDCl3):d 1.17 (t, 3H, J = 7.6 Hz, ethyl-CH3), 1.24-2.00 (m, 10H, 10 cyclohexyl-H), 2.50 (q, 2H, J = 15.2 Hz, ethyl-CH2), 2.63 (s, 3H, thiadiazole-CH3), 4.27-4.34 (m, 1H, cyclohexyl-CH), 4.41 (d, 1H, J = 5.2 Hz, NH), 6.18 (d, 1H, J = 8.0 Hz, CH), 6.63 (d, 2H, J = 8.4 Hz, Ph-H), 7.05 (d, 2H,, J = 8.4 Hz, Ph-H). HRMS: Calcd. for C19H25N7S (M+Na)+: 406.1784, Found: 406.1783; IR (KBr pellet press, cm 1): v3419, 2935, 2862, 1616, 1523, 1446, 1281, 1102, 818, 756. 4m: White solid; yield 48%; mp 143-144 (C; 1H NMR (400 (M+H)+z, CDCl3): δ 1.27-2.00 (m, 10H, cyclohexyl-H), 2.15 (s, 3H, Ph-CH3), 2.65 (s, 3H, thiadiazole-CH3), 4.29-4.34 (m, 1H, cyclohexyl-CH), 4.75 (d, 1H, J = 7.6 Hz, NH), 6.19 (d, 1H, J = 7.6 Hz, CH), 6.36-6.41 (m, 2H, PhH), 7.00 (t, 1H, J = 8.4 Hz, PhH). HRMS: Calcd. for C18H22FN7S (M-H)-: 386.1569, Found: 386.1571; IR (KBr pellet press, cm-1): v3285, 2927, 2849, 1496, 1450, 1236, 1133, 1012, 824, 686.
-
[1]
-
-
[1]
Yulong Shi , Fenbei Chen , Mengyuan Wu , Xin Zhang , Runze Meng , Kun Wang , Yan Wang , Yuheng Mei , Qionglu Duan , Yinghong Li , Rongmei Gao , Yuhuan Li , Hongbin Deng , Jiandong Jiang , Yanxiang Wang , Danqing Song . Chemical construction and anti-HCoV-OC43 evaluation of novel 10,12-disubstituted aloperine derivatives as dual cofactor inhibitors of TMPRSS2 and SR-B1. Chinese Chemical Letters, 2024, 35(5): 108792-. doi: 10.1016/j.cclet.2023.108792
-
[2]
Jing Cao , Dezheng Zhang , Bianqing Ren , Ping Song , Weilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863
-
[3]
Rong-Nan Yi , Wei-Min He . Photocatalytic Minisci-type multicomponent reaction for the synthesis of 1-(halo)alkyl-3-heteroaryl bicyclo[1.1.1]pentanes. Chinese Chemical Letters, 2024, 35(10): 110115-. doi: 10.1016/j.cclet.2024.110115
-
[4]
Zizhuo Liang , Fuming Du , Ning Zhao , Xiangxin Guo . Revealing the reason for the unsuccessful fabrication of Li3Zr2Si2PO12 by solid state reaction. Chinese Journal of Structural Chemistry, 2023, 42(11): 100108-100108. doi: 10.1016/j.cjsc.2023.100108
-
[5]
Chaozheng He , Jia Wang , Ling Fu , Wei Wei . Nitric oxide assists nitrogen reduction reaction on 2D MBene: A theoretical study. Chinese Chemical Letters, 2024, 35(5): 109037-. doi: 10.1016/j.cclet.2023.109037
-
[6]
Yiqian Jiang , Zihan Yang , Xiuru Bi , Nan Yao , Peiqing Zhao , Xu Meng . Mediated electron transfer process in α-MnO2 catalyzed Fenton-like reaction for oxytetracycline degradation. Chinese Chemical Letters, 2024, 35(8): 109331-. doi: 10.1016/j.cclet.2023.109331
-
[7]
Yu-Hang Miao , Zheng-Xu Zhang , Xu-Yi Huang , Yuan-Zhao Hua , Shi-Kun Jia , Xiao Xiao , Min-Can Wang , Li-Ping Xu , Guang-Jian Mei . Catalytic asymmetric dearomative azo-Diels–Alder reaction of 2-vinlyindoles. Chinese Chemical Letters, 2024, 35(4): 108830-. doi: 10.1016/j.cclet.2023.108830
-
[8]
Mengli Xu , Zhenmin Xu , Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305
-
[9]
Junan Pan , Xinyi Liu , Huachao Ji , Yanwei Zhu , Yanling Zhuang , Kang Chen , Ning Sun , Yongqi Liu , Yunchao Lei , Kun Wang , Bao Zang , Longlu Wang . The strategies to improve TMDs represented by MoS2 electrocatalytic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(11): 109515-. doi: 10.1016/j.cclet.2024.109515
-
[10]
Haojie Duan , Hejingying Niu , Lina Gan , Xiaodi Duan , Shuo Shi , Li Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038
-
[11]
Xiongbo Song , Jinwen Xiao , Juan Wu , Li Sun , Long Chen . Decellularized amniotic membrane promotes the anti-inflammatory response of macrophages via PI3K/AKT/HIF-1α pathway. Chinese Chemical Letters, 2025, 36(1): 109844-. doi: 10.1016/j.cclet.2024.109844
-
[12]
Zixuan Zhu , Xianjin Shi , Yongfang Rao , Yu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954
-
[13]
Yi Herng Chan , Zhe Phak Chan , Serene Sow Mun Lock , Chung Loong Yiin , Shin Ying Foong , Mee Kee Wong , Muhammad Anwar Ishak , Ven Chian Quek , Shengbo Ge , Su Shiung Lam . Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis. Chinese Chemical Letters, 2024, 35(8): 109329-. doi: 10.1016/j.cclet.2023.109329
-
[14]
Weichen WANG , Chunhua GONG , Junyong ZHANG , Yanfeng BI , Hao XU , Jingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415
-
[15]
Lili Zhang , Hui Gao , Gong Zhang , Yuning Dong , Kai Huang , Zifan Pang , Tuo Wang , Chunlei Pei , Peng Zhang , Jinlong Gong . Cross-section design of the flow channels in membrane electrode assembly electrolyzer for CO2 reduction reaction through numerical simulations. Chinese Chemical Letters, 2025, 36(1): 110204-. doi: 10.1016/j.cclet.2024.110204
-
[16]
Huixin Chen , Chen Zhao , Hongjun Yue , Guiming Zhong , Xiang Han , Liang Yin , Ding Chen . Unraveling the reaction mechanism of high reversible capacity CuP2/C anode with native oxidation POx component for sodium-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109650-. doi: 10.1016/j.cclet.2024.109650
-
[17]
Lizhang Chen , Yu Fang , Mingxin Pang , Ruoxu Sun , Lin Xu , Qixing Zhou , Yawen Tang . Interfacial engineering of core/satellite-structured RuP/RuP2 heterojunctions for enhanced pH-universal hydrogen evolution reaction. Chinese Journal of Structural Chemistry, 2025, 44(1): 100461-100461. doi: 10.1016/j.cjsc.2024.100461
-
[18]
Xiangyuan Zhao , Jinjin Wang , Jinzhao Kang , Xiaomei Wang , Hong Yu , Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159
-
[19]
Anqiu LIU , Long LIN , Dezhi ZHANG , Junyu LEI , Kefeng WANG , Wei ZHANG , Junpeng ZHUANG , Haijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424
-
[20]
Lumin Zheng , Ying Bai , Chuan Wu . Multi-electron reaction and fast Al ion diffusion of δ-MnO2 cathode materials in rechargeable aluminum batteries via first-principle calculations. Chinese Chemical Letters, 2024, 35(4): 108589-. doi: 10.1016/j.cclet.2023.108589
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(927)
- HTML views(11)