Citation: Xiao Yan, Xiao-Zheng Lan. Phase behavior of undecane-tetradecane mixtures confined in SBA-15[J]. Chinese Chemical Letters, ;2013, 24(10): 885-888. shu

Phase behavior of undecane-tetradecane mixtures confined in SBA-15

  • Corresponding author: Xiao-Zheng Lan, 
  • Received Date: 29 March 2013
    Available Online: 20 May 2013

    Fund Project: We thank the financial support from National Natural Science Foundation of China (No. 21273138) (No. 21273138)

  • Phase behavior of undecane-tetradecane (n-C11H24-C14H30, C11-C14) mixtures in bulk and confined in SBA-15 have been studied using differential scanning calorimetry. The bulk C11-C14 system shows multiple phase regions due to rotator phase. Confined in the pores of SBA-15 (pore diameters 3.8-7.8 nm), the mixtures only show a melting boundary of a straight line and a curve, respectively. In SBA-15 (17.2 nm), phase behavior of themixtures has some similarity to that of the bulk. Under confinement, the phase diagrams of the mixtures vary with the pore size, temperature, and compositions.
  • 加载中
    1. [1]

      [1] C. Alba-Simionesco, B. Coasne, G. Dosseh, et al., Effects of confinement on freezing and melting, J. Phys. Condens. Matter 18 (2006) R15-R68.

    2. [2]

      [2] H.K. Christenson, Confinement effects on freezing and melting, J. Phys. Condens. Matter 13 (2001) R95-R133.

    3. [3]

      [3] M. Alcoutlabi, G.B. McKenna, Effects of confinement on material behaviour at the nanometre size scale, J. Phys. Condens. Matter 17 (2005) R461-R524.

    4. [4]

      [4] B. Coasne, J. Czwartos, M. Sliwinska-Bartkowiak, K.E. Gubbins, Effect of pressure on the freezing of pure fluids and mixtures confined in nanopores, J. Phys. Chem. B 113 (2009) 13874-13881.

    5. [5]

      [5] B. Coasne, J. Czwartos, M. Sliwinska-Bartkowiak, K.E. Gubbins, Freezing of mixtures confined in silica nanopores: experiment and molecular simulation, J. Chem. Phys. 133 (2010) 084701-84709.

    6. [6]

      [6] Y.L. Aristov, G.D. Marco, M.M. Tokarev, et al., Selective water sorbents for multiple applications, CaCl2 solution confined in micro-and mesoporous silica gels: pore size effect on the "solidification-melting" diagram, Catal. Lett. 61 (1997) 147-154.

    7. [7]

      [7] J. Czwartos, M. Sliwinska-Bartkowiak, B. Coasne, K.E. Gubbins, Melting of mixtures in silica nanopores, Pure Appl. Chem. 81 (2009) 1953-1959.

    8. [8]

      [8] H.R. Pei, X. Yan, X.Z. Lan, Unusual phase behavior of decane-dodecane mixtures confined in SBA-15: size effect on binary phase diagram, Chin. Chem. Lett. 23 (2012) 1173-1176.

    9. [9]

      [9] X.Z. Lan, H.R. Pei, X. Yan, W.B. Liu, Phase behavior of dodecane-tetradecane binary system confined in SBA-15, J. Therm. Anal. Calorim. 110 (2012) 1437-1442.

    10. [10]

      [10] X. Yan, H.R. Pei, T.B.Wang, W.B. Liu, X.Z. Lan, Phase behavior of undecane-dodecane mixtures confined in SBA-15, J. Chem. 2013 (2013), Article ID 476236, 7 pp.

    11. [11]

      [11] S.R. Craig, G.P. Hastie, K.J. Roberts, J.N. Sherwood, Investigation into the structures of some normal alkanes within the homologous series C13H28 to C60H122 using high-resolution synchrotron X-ray powder diffraction, J. Mater. Chem. 4 (1994) 977-981.

    12. [12]

      [12] P. Huber, V. Soprunyuk, K. Knorr, Structural transformations of even-numbered nalkanes confined in mesopores, Phys. Rev. E 74 (2006) 031610-31615.

    13. [13]

      [13] Y.Y. Pu, Y. Li, W. Zhuang, et al., Preparation and characterizations of helical mesoporous silica nanorods using CTAB and alcohols, Chin. Chem. Lett. 23 (2012) 1201-1204.

    14. [14]

      [14] Z.L. Yang, J.L. Li, C.L. Zhang, Y.F. Lu, Z.Z. Yang, Two-dimensional mesoporous materials: from fragile coatings to flexible membranes, Chin. Chem. Lett. 24 (2013) 89-92.

    15. [15]

      [15] L. Cao, T. Man, M. Kruk, Synthesis of ultra-large-pore SBA-15 silica with twodimensional hexagonal structure using triisopropylbenzene as micelle expander, Chem. Mater. 21 (2009) 1144-1153.

    16. [16]

      [16] T. Calvet, E. Tauler, M.A. Cuevas-Diart, et al., Miltenburg, application of the "shape-factors method" to purity analysis of compounds by thermal methods, Thermochim. Acta 204 (1992) 271-280.

    17. [17]

      [17] D. Mondieig, F. Rajabalee, V. Metivaud, N-Alkane binary molecular alloys, Chem. Mater. 16 (2004) 786-798.

    18. [18]

      [18] A. Sabour, J.B. Bourdet, M. Bouroukba, M. Dirand, Modifications to the binary phase diagram of the alkane mixtures n-C23-n-C24, Thermochim. Acta 249 (1995) 269-283.

    19. [19]

      [19] G. Dosseh, Y. Xia, C. Alba-Simionesco, Cyclohexane and benzene confined in MCM-41 and SBA-15 confinement effects on freezing and melting, J. Phys. Chem. B 107 (2003) 6445-6453.

    20. [20]

      [20] P. Huber, D. Wallacher, J. Albers, K. Knorr, Quenching of lamellar ordering in an nalkane embedded in nanopores, Europhys. Lett. 65 (2004) 351-357.

    21. [21]

      [21] D. Fu, Y. Liu, Y. Su, G. Liu, D. Wang, Crystallization behavior of binary even-even nalkane mixtures in microcapsules: effect of composition and confined geometry on solid-solid phase separation, J. Phys. Chem. B 115 (2011) 4632-4638.

  • 加载中
    1. [1]

      Chaochao WeiRu WangZhongkai WuQiyue LuoZiling JiangLiang MingJie YangLiping WangChuang Yu . Revealing the size effect of FeS2 on solid-state battery performances at different operating temperatures. Chinese Chemical Letters, 2024, 35(6): 108717-. doi: 10.1016/j.cclet.2023.108717

    2. [2]

      Conghui WangLei XuZhenhua JiaTeck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075

    3. [3]

      Min HuangRu ChengShuai WenLiangtong LiJie GaoXiaohui ZhaoChunmei LiHongyan ZouJian Wang . Ultrasensitive detection of microRNA-21 in human serum based on the confinement effect enhanced chemical etching of gold nanorods. Chinese Chemical Letters, 2024, 35(9): 109379-. doi: 10.1016/j.cclet.2023.109379

    4. [4]

      Xuanyu WangZhao GaoWei Tian . Supramolecular confinement effect enabling light-harvesting system for photocatalytic α-oxyamination reaction. Chinese Chemical Letters, 2024, 35(11): 109757-. doi: 10.1016/j.cclet.2024.109757

    5. [5]

      Xingxing JiangYuxin ZhaoYan KongJianju SunShangzhao FengXin LuQi HuHengpan YangChuanxin He . Support effect and confinement effect of porous carbon loaded tin dioxide nanoparticles in high-performance CO2 electroreduction towards formate. Chinese Chemical Letters, 2025, 36(1): 109555-. doi: 10.1016/j.cclet.2024.109555

    6. [6]

      Rui LiuYue YuLu DengMaoxia XuHaorong RenWenjie LuoXudong CaiZhenyu LiJingyu ChenHua Yu . The synergistic effect of A-site cation engineering and phase regulation enables efficient and stable Ruddlesden-Popper perovskite solar cells. Chinese Chemical Letters, 2024, 35(12): 109545-. doi: 10.1016/j.cclet.2024.109545

    7. [7]

      Siwei WangWei-Lei ZhouYong Chen . Cucurbituril and cyclodextrin co-confinement-based multilevel assembly for single-molecule phosphorescence resonance energy transfer behavior. Chinese Chemical Letters, 2024, 35(12): 110261-. doi: 10.1016/j.cclet.2024.110261

    8. [8]

      Mengjuan SunMuye ZhouYifang XiaoHailei TangJinhua ChenRuitao ZhangChunjiayu LiQi YaQian ChenJiasheng TuQiyue WangChunmeng Sun . Reversibly size-switchable polyion complex micelles for antiangiogenic cancer therapy. Chinese Chemical Letters, 2024, 35(7): 109110-. doi: 10.1016/j.cclet.2023.109110

    9. [9]

      Haijiao LiuQiao FengYu HuangFeng WuYali LiuMinxia ShenXiao GuoWenting DaiWeining QiYifan ZhangLu LiQiyuan WangBianhong ZhouJianjun Li . Composition and size distribution of wintertime inorganic aerosols at ground and alpine regions of northwest China. Chinese Chemical Letters, 2024, 35(11): 109636-. doi: 10.1016/j.cclet.2024.109636

    10. [10]

      Xueyan ZhangJicong ChenSongren HanShiyan DongHuan ZhangYuhong ManJie YangYe BiLesheng Teng . The size-switchable microspheres co-loaded with RANK siRNA and salmon calcitonin for osteoporosis therapy. Chinese Chemical Letters, 2024, 35(12): 109668-. doi: 10.1016/j.cclet.2024.109668

    11. [11]

      Chang LIUChao ZHANGTongbu LU . Small-size Au nanoparticles anchored on pyrenyl-graphdiyne for N2 electroreduction. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 174-182. doi: 10.11862/CJIC.20240305

    12. [12]

      Pengcheng SuShizheng ChenZhihong YangNingning ZhongChenzi JiangWanbin Li . Vapor-phase postsynthetic amination of hypercrosslinked polymers for efficient iodine capture. Chinese Chemical Letters, 2024, 35(9): 109357-. doi: 10.1016/j.cclet.2023.109357

    13. [13]

      Ce LiangQiuhui SunAdel Al-SalihyMengxin ChenPing Xu . Recent advances in crystal phase induced surface-enhanced Raman scattering. Chinese Chemical Letters, 2024, 35(9): 109306-. doi: 10.1016/j.cclet.2023.109306

    14. [14]

      Mengjia Luo Yi Qiu Zhengyang Zhou . Exploring temperature-driven phase dynamics of phosphate: The periodic to incommensurately modulated long-range ordered phase transition in CsCdPO4. Chinese Journal of Structural Chemistry, 2025, 44(1): 100446-100446. doi: 10.1016/j.cjsc.2024.100446

    15. [15]

      Ying ZhaoYin-Hang ChaiTian ChenJie ZhengTing-Ting LiFrancisco AznarezLi-Long DangLu-Fang Ma . Size-controlled synthesis and near-infrared photothermal response of Cp* Rh-based metalla[2]catenanes and rectangular metallamacrocycles. Chinese Chemical Letters, 2024, 35(6): 109298-. doi: 10.1016/j.cclet.2023.109298

    16. [16]

      Lishan XiongXinyuan LiXiaojie LuZhendong ZhangYan ZhangWen WuChenhui Wang . Inhaled multilevel size-tunable, charge-reversible and mucus-traversing composite microspheres as trojan horse: Enhancing lung deposition and tumor penetration. Chinese Chemical Letters, 2024, 35(9): 109384-. doi: 10.1016/j.cclet.2023.109384

    17. [17]

      Shengyu ZhaoQinhao ShiWuliang FengYang LiuXinxin YangXingli ZouXionggang LuYufeng Zhao . Suppression of multistep phase transitions of O3-type cathode for sodium-ion batteries. Chinese Chemical Letters, 2024, 35(5): 108606-. doi: 10.1016/j.cclet.2023.108606

    18. [18]

      Xue XinQiming QuIslam E. KhalilYuting HuangMo WeiJie ChenWeina ZhangFengwei HuoWenjing Liu . Hetero-phase zirconia encapsulated with Au nanoparticles for boosting electrocatalytic nitrogen reduction. Chinese Chemical Letters, 2024, 35(5): 108654-. doi: 10.1016/j.cclet.2023.108654

    19. [19]

      Tian YangYi LiuLina HuaYaoyao ChenWuqian GuoHaojie XuXi ZengChanghao GaoWenjing LiJunhua LuoZhihua Sun . Lead-free hybrid two-dimensional double perovskite with switchable dielectric phase transition. Chinese Chemical Letters, 2024, 35(6): 108707-. doi: 10.1016/j.cclet.2023.108707

    20. [20]

      Shu LinKezhen Qi . Phase-dependent lithium-alloying reactions for lithium-metal batteries. Chinese Chemical Letters, 2024, 35(4): 109431-. doi: 10.1016/j.cclet.2023.109431

Metrics
  • PDF Downloads(0)
  • Abstract views(741)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return