Citation: Subba Rao Devineni, Srinivasulu Doddaga, Rajasekhar Donka, Naga Raju Chamarthi. CeCl3·7H2O-SiO2: Catalyst promoted microwave assisted neat synthesis, antifungal and antioxidant activities of α-diaminophosphonates[J]. Chinese Chemical Letters, ;2013, 24(8): 759-763. shu

CeCl3·7H2O-SiO2: Catalyst promoted microwave assisted neat synthesis, antifungal and antioxidant activities of α-diaminophosphonates

  • Corresponding author: Srinivasulu Doddaga, 
  • Received Date: 5 March 2013
    Available Online: 16 April 2013

  • CeCl3·7H2O supported on silica (CeCl3·7H2O-SiO2) is used as a heterogeneous, efficient and recyclable catalyst for a three component one-pot reaction of an amine, aldehydes and diethyl phosphite to synthesize a-diaminophosphonate derivatives under microwave irradiation exploiting neat reaction conditions. Ten α-diaminophosphonates (6a-j) of 4,4'-sulfonyldianiline (Dapsone) (3.) were synthesized and structural elucidation was confirmed by spectral data. Antifungal and antioxidant activities were evaluated include minimum inhibitory concentrations and IC50 values, respectively of the titled compounds. Compounds 6h, 6i exhibited promising antioxidant activity at lower IC50 values 53.7 μg/mL, 53.2 μg/mL, respectively as compared with standard IC50 value 51.6 μg/mL.
  • 加载中
    1. [1]

      [1] M.A. Phillips, R. Fletterick, W.J. Rutter, Arginine 127 stabilizes the transition state in carboxypeptidase, J. Biol. Chem. 265 (1990) 20692-20698.

    2. [2]

      [2] F.R. Atherton, C.H. Hassal, R.W. Lambert, Synthesis and structure-activity relationship of antibacterial phosphonopeptides incorporating (1-aminoethyl)phosphonic acid and (aminomethyl)phosphonic acid, J. Med. Chem. 29 (1986) 29-41.

    3. [3]

      [3] L. Maier, Synthesis and properties of 1-amino-2-arylethylphosphonic acid and phosphinic acids as well as phosphine oxides, Phosphorus, Sulfur Silicon Relat. Elem. 53 (1990) 43-67.

    4. [4]

      [4] L. Maier, H. Spoerri, Organic phosphorus compounds 96.1 resolution of 1-amino-2-(4-fluorophenyl)ethylphosphonic acid as well as some di-and tripeptides, Phosphorus, Sulfur Silicon Relat. Elem. 61 (1991) 69-75.

    5. [5]

      [5] J.H. Meyer, P.A. Barlett, Macrocyclic inhibitors of penicillopepsin. 1: δesign, synthesis, and evaluation of an inhibitor bridged between P1 and P3, J. Am. Chem. Soc. 120 (1998) 4600-4609.

    6. [6]

      [6] D.J. Miller, S.M. Hammond, D. Anderluzzi, et al., Aminoalkylphosphinate inhibitors of d-Ala-d-Ala adding enzyme, J. Chem. Soc. Perkin Trans. 1 (1998) 131-142.

    7. [7]

      [7] M.C. Allen, W. Fuhrer, B. Tuck, et al., Renin inhibitors: synthesis of transition-state analog inhibitors containing phosphorus acid derivatives at the scissile bond, J. Med. Chem. 32 (1989) 1652-1661.

    8. [8]

      [8] (a) J. Oleksyszyn, J.C. Powers, Irreversible inhibition of serine proteases by peptide derivatives of (a-aminoalkyl)phosphonate diphenyl esters, Biochemistry 30 (1991) 485-493;

    9. [9]

      (b) D. Green, G. Patel, S. Elgendy, et al., The facile synthesis of O,O-dialkyl 1-aminoalkanephosphonates, Tetrahedron Lett. 34 (1993) 6917-6920.

    10. [10]

      [9] (a) D.M. Mizrahi, T. Waner, Y. Segall, a-Amino acid derived bisphosphonates. Synthesis and anti-resorftive activity, Phosphorus, Sulfur Silicon Relat. Elem. 173 (2001) 1-25;

    11. [11]

      (b) J.R.Green,Anti-tumorpotential of bisphosphonates,Med. Klin.95(2000)23-28.

    12. [12]

      [10] S.C. Fields, Synthesis of natural products containing a C-P bond, Tetrahedron 55 (1999) 12237-12273.

    13. [13]

      [11] (a) J. Zon, Asymmetric addition of tris(trimethylsilyl) phosphite to chiral aldimines, Pol. J. Chem. 55 (1981) 643-646;

    14. [14]

      (b) S. Laschat, H.Kunz, Carbohydrates as chiraltemplates: stereoselective synthesis of (R)-and (S)-α-aminophosphonic acid derivatives, Synthesis 1 (1992) 90-95;

    15. [15]

      (c) J.S.Yadav, B.V.S.Reddy, K. Sarita Raj, et al., Zr4+-catalyzed efficientsynthesis ofaaminophosphonates, Synthesis 15 (2001) 2277-2280.[12] B.C. Ranu, A. Hajra, U. Jana, General procedure for the synthesis of a-aminophosphonates from aldehydes and ketones using indium(Ⅲ) chloride as a catalyst, Org. Lett. 1 (1999) 1141-1143.

    16. [16]

      [13] Z.P. Zhan, J.P. Li, Bismuth(Ⅲ) chloride-catalyzed three-component coupling: synthesis of a-aminophosphonates, Synth. Commun. 35 (2005) 2501-2504.

    17. [17]

      [14] Z. Rezaei, H. Firouzabadi, N. Iranpoor, et al., Design and one-pot synthesis of aaminophosphonates and bis(α-aminophosphonates) by iron(Ⅲ) chloride and cytotoxic activity, Eur. J. Med. Chem. 44 (2009) 4266-4275.

    18. [18]

      [15] F. Xu, Y.Q. Luo, J.T. Wu, Q. Shen, H. Chen, Facile one-pot synthesis of a-aminophosphonates using lanthanide chloride as catalyst, Heteroat. Chem. 17 (2006) 389-392.

    19. [19]

      [16] A. Manjula, B.V. Rao, P. Neelakantam, One-pot synthesis of a-aminophosphonates: an inexpensive approach, Synth. Commun. 33 (2003) 2963-2969.

    20. [20]

      [17] S. Ambica, S.C. Kumar, M.S. Taneja, et al., One-pot synthesis of a-aminophosphonates catalyzed by antimony trichloride adsorbed on alumina, Tetrahedron Lett. 49 (2008) 2208-2212.

    21. [21]

      [18] R. Ghosh, S. Maiti, A. Chakraborty, et al., In(OTf)3 catalysed simple one-pot synthesis of a-aminophosphonates, J. Mol. Catal. A: Chem. 210 (2004) 53-57.

    22. [22]

      [19] S. Sobhani, Z. Tashrifi, One-pot synthesis of primary 1-aminophosphonates: coupling reaction of carbonyl compounds, hexamethyldisilazane, and diethyl phosphite catalyzed by Al(OTf)3, Heteroat. Chem. 20 (2009) 109-115.

    23. [23]

      [20] S. Sobhani, Z. Tashrifi, Al(OTf)3 as an efficient catalyst for one-pot synthesis of primary diethyl 1-aminophosphonates under solvent-free conditions, Synth. Commun. 39 (2008) 120-131.

    24. [24]

      [21] N. Azizi, M.R. Saidi, Lithium perchlorate-catalyzed three-component coupling: a facile and general method for the synthesis of a-aminophosphonates under solvent-free conditions, Eur. J. Org. Chem. (23) (2003) 4630-4633.

    25. [25]

      [22] L. Shen, S. Cao, N.J. Liu, et al., Ytterbium(Ⅲ) perfluorooctanoate catalyzed one-pot, three-component synthesis of fully substituted pyrazoles under solvent-free conditions, Synlett 9 (2008) 1341-1344.

    26. [26]

      [23] A.J. Abbas, N. Mahshid, A.D. Mohammad, CeCl3·7H2O-catalyzed one-pot Kabachnik-Fields reaction: a green protocol for three-component synthesis of a-aminophosphonates, Heteroat. Chem. 21 (2010) 397-403.

    27. [27]

      [24] (a) A.W. Bauer, M.M. Kirby, J.C. Sherris, et al., Antibiotic susceptibility testing by a standardized single disk method, Am. J. Clin. Pathol. 45 (1966) 493-496;

    28. [28]

      (b) National Committee for Clinical Laboratory Standards, Methods for Dilution, Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically, Approved Standard M7-A5, 5th ed., NCCLS, Wayne, PA, 2000, p. 30;

    29. [29]

      (c) G.H. Bonjar Shahidi, Evaluation of antibacterial properties of iranian medicinal-plants against Micrococcus luteus, Serratia marcescens, Klebsiella pneumonia and Bordetella bronchoseptica, Asian J. Plant Sci. 3 (2004) 82-86.

    30. [30]

      [25] (a) M. Burits, F. Bucar, Antioxidant activity of Nigella sativa essential oil, Phytother. Res. 14 (2000) 323-328;

    31. [31]

      (b) M. Cuendet, K. Hostettmann, O. Potterat, Iridoid glucosides with free radical scavenging properties from Fagraea blumei, Helv. Chim. Acta 80 (1997) 1144-1152.

    32. [32]

      [26] (a) L.C. Green, D.A. Wagner, J. Glogowski, et al., Analysis of nitrate, nitrite, and

    33. [33]

      [15N] nitrate in biological fluids, Anal. Biochem. 126 (1982) 131-138;

    34. [34]

      (b) L. Marcocci, J.J. Maguire, M.T. DroyLefaix, et al., The nitric oxide scavenging property of Ginkgo biloba extract EGb 761, Biochem. Biophys. Res. Commun. 201 (1994) 748-755.

    35. [35]

      [27] R.J. Ruch, S.J. Cheng, J.E. Klaunig, Prevention of cytotoxicity and inhibition of intercellular communication by antioxidant catechins isolated from Chinese green tea, Carcinogenesis 10 (1989) 1003-1008.

  • 加载中
    1. [1]

      Anqiu LIULong LINDezhi ZHANGJunyu LEIKefeng WANGWei ZHANGJunpeng ZHUANGHaijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424

    2. [2]

      Guoping YangZhoufu LinXize ZhangJiawei CaoXuejiao ChenYufeng LiuXiaoling LinKe Li . Assembly of Y(Ⅲ)-containing antimonotungstates induced by malic acid with catalytic activity for the synthesis of imidazoles. Chinese Chemical Letters, 2024, 35(12): 110274-. doi: 10.1016/j.cclet.2024.110274

    3. [3]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    4. [4]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    5. [5]

      Xiaomeng HuJie YuLijie SunLinfeng ZhangWei ZhouDongpeng YanXinrui Wang . Synthesis of an AVB@ZnTi-LDH composite with synergistically enhance UV blocking activity and high stability for potential application in sunscreen formulations. Chinese Chemical Letters, 2024, 35(11): 109466-. doi: 10.1016/j.cclet.2023.109466

    6. [6]

      Feng Sha Xinyan Wu Ping Hu Wenqing Zhang Xiaoyang Luan Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082

    7. [7]

      Tao Cao Fang Fang Nianguang Li Yinan Zhang Qichen Zhan . Green Synthesis of p-Hydroxybenzonitrile Catalyzed by Spinach Extracts under Red-Light Irradiation: Research and Exploration of Innovative Experiments for Pharmacy Undergraduates. University Chemistry, 2024, 39(5): 63-69. doi: 10.3866/PKU.DXHX202309098

    8. [8]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    9. [9]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    10. [10]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    11. [11]

      Guangyao WangZhitong XuYe QiYueguang FangGuiling NingJunwei Ye . Electrospun nanofibrous membranes with antimicrobial activity for air filtration. Chinese Chemical Letters, 2024, 35(10): 109503-. doi: 10.1016/j.cclet.2024.109503

    12. [12]

      Yu YaoJinqiang ZhangYantao WangKunsheng HuYangyang YangZhongshuai ZhuShuang ZhongHuayang ZhangShaobin WangXiaoguang Duan . Nitrogen-rich carbon for catalytic activation of peroxymonosulfate towards green synthesis. Chinese Chemical Letters, 2024, 35(11): 109633-. doi: 10.1016/j.cclet.2024.109633

    13. [13]

      Ting WangXin YuYaqiang Xie . Unlocking stability: Preserving activity of biomimetic catalysts with covalent organic framework cladding. Chinese Chemical Letters, 2024, 35(6): 109320-. doi: 10.1016/j.cclet.2023.109320

    14. [14]

      Fangping YangJin ShiYuansong WeiQing GaoJingrui ShenLichen YinHaoyu Tang . Mixed-charge glycopolypeptides as antibacterial coatings with long-term activity. Chinese Chemical Letters, 2025, 36(2): 109746-. doi: 10.1016/j.cclet.2024.109746

    15. [15]

      Chong LiuLing LiJiahui GaoYanwei LiNazhen ZhangJing ZangCong LiuZhaopei GuoYanhui LiHuayu Tian . The study of antibacterial activity of cationic poly(β-amino ester) regulating by amphiphilic balance. Chinese Chemical Letters, 2025, 36(2): 110118-. doi: 10.1016/j.cclet.2024.110118

    16. [16]

      Rui ChengTingting ZhangXin HuangJian Yu . Facile synthesis of high-brightness green-emitting carbon dots with narrow bandwidth towards backlight display. Chinese Chemical Letters, 2024, 35(5): 108763-. doi: 10.1016/j.cclet.2023.108763

    17. [17]

      Huihui LIUBaichuan ZHAOChuanhui WANGZhi WANGCongyun ZHANG . Green synthesis of MIL-101/Au composite particles and their sensitivity to Raman detection of thiram. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2021-2030. doi: 10.11862/CJIC.20240059

    18. [18]

      Xiangyuan Zhao Jinjin Wang Jinzhao Kang Xiaomei Wang Hong Yu Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159

    19. [19]

      Xinyi Hu Riguang Zhang Zhao Jiang . Depositing the PtNi nanoparticles on niobium oxide to enhance the activity and CO-tolerance for alkaline methanol electrooxidation. Chinese Journal of Structural Chemistry, 2023, 42(11): 100157-100157. doi: 10.1016/j.cjsc.2023.100157

    20. [20]

      Bin DongNing YuQiu-Yue WangJing-Ke RenXin-Yu ZhangZhi-Jie ZhangRuo-Yao FanDa-Peng LiuYong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221

Metrics
  • PDF Downloads(0)
  • Abstract views(639)
  • HTML views(12)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return