Citation: Xiao-Jian Wang, Yu-Lin Tian, Qing-Yang Zhang, Jian-Guo Qi, Da-Li Yin. An efficient synthesis of substituted 1,4-diazepines by a Pd catalyzed amination and sequential hydrogenation condensation[J]. Chinese Chemical Letters, ;2013, 24(8): 743-746. shu

An efficient synthesis of substituted 1,4-diazepines by a Pd catalyzed amination and sequential hydrogenation condensation

  • Corresponding author: Da-Li Yin, 
  • Received Date: 20 March 2013
    Available Online: 16 April 2013

  • An efficient synthesis of substituted 1,4-diazepines is developed. The accessible intermediates have been obtained via Pd-catalyzed amination. The subsequent hydrogenation and intramolecular condensation sequences could be conducted successively in one pot without special operation. The mild and general strategy enables the synthesis of various substituted 1,4-diazepines in high yields.
  • 加载中
    1. [1]

      [1] R.D. Charan, G. Schlingmann, J. Janso, et al., Diazepinomicin, a new antimicrobial alkaloid from a marine Micromonospora sp., J. Nat. Prod. 67 (2004) 1431-1433.

    2. [2]

      [2] B. Fulton, K.L. Goa, Olanzapine. A review of its pharmacological properties and therapeutic efficacy in the management of schizophrenia and related psychoses, Drugs 53 (1997) 281-298.

    3. [3]

      [3] A. Fitton, R.C. Heel, Clozapine. A review of its pharmacological properties, and therapeutic use in schizophrenia, Drugs 40 (1990) 722-747.

    4. [4]

      [4] A.W.H. Wardrop, G.L. Sainsbury, J.M. Harrison, T.D. Inch, Preparation of some dibenz[b,f][1,4]oxazepines and dibenz[b,e]azepines, J. Chem. Soc., Perkin Trans. 1 (1976) 1279-1285.

    5. [5]

      [5] X. Xu, S. Guo, Q. Dang, J. Chen, X. Bai, A new strategy toward fused-pyridine heterocyclic scaffolds: Bischler-Napieralski-type cyclization, followed by sulfoxide extrusion reaction, J. Comb. Chem. 9 (2007) 773-782.

    6. [6]

      [6] Y. Liao, B.J. Venhuis, N. Rodenhuis, et al., New (sulfonyloxy)piperazinyldibenzazepines as potential atypical antipsychotics: chemistry and pharmacological evaluation, J. Med. Chem. 42 (1999) 2235-2244.

    7. [7]

      [7] R.A. Smits, H.D. Lim, B. Stegink, et al., Characterization of the histamine H4 receptor binding site. Part 1. Synthesis and pharmacological evaluation of dibenzodiazepine derivatives, J. Med. Chem. 49 (2006) 4512-4516.

    8. [8]

      [8] D. Tsvelikhovsky, S.L. Buchwald, Concise palladium-catalyzed synthesis of dibenzodiazepines and structural analogues, J. Am. Chem. Soc. 133 (2011) 14228-14231.

    9. [9]

      [9] J.F. Hartwig, Transition metal catalyzed synthesis of arylamines and aryl ethers from aryl halides and triflates: scope and mechanism, Angew. Chem. Int. Ed. 37 (1998) 2046-2067.

    10. [10]

      [10] D.S. Surry, S.L. Buchwald, Biaryl phosphane ligands in palladium-catalyzed amination, Angew. Chem. Int. Ed. 47 (2008) 6338-6361.

    11. [11]

      [11] K. Liu, D. Yin, Efficient method for the synthesis of 2,3-unsubstituted nitro containing indoles from o-fluoronitrobenzenes, Org. Lett. 11 (2009) 637-639.

    12. [12]

      [12] G. Zhang, H. Zhang, X. Wang, et al., Synthesis of new riminophenazines with pyrimidine and pyrazine substitution at the 2-N position, Molecules 16 (2011) 6985-6991.

    13. [13]

      [13] G. Li, Q. Xiao, C. Li, X. Wang, D. Yin, A facile preparation of tetralins from arene-1,4-diones using titanium(IV) chloride and triethylsilane, Tetrahedron Lett. 52 (2011) 6827-6830.

    14. [14]

      [14] G. Zhang, X. Wang, C. Li, D. Yin, Palladium-catalyzed cross-coupling of electrondeficient heteroaromatic amines with heteroaryl halides, Synth. Commun. 43 (2012) 456-463.

    15. [15]

      [15] Compound 5a: 1H NMR (300 MHz, CD3Cl): δ 7.710 (d, 2H, J = 5.4 Hz), 7.404 (m, 3H), 7.323 (m, 2H), 7.014 (m, 3H), 6.918 (m, 1H), 6.779 (m, 1H), 6.704 (m, 1H), 4.975 (s, 1H). 13C NMR (100 MHz, CDCl3): δ 169.49, 154.45, 142.60, 141.32, 140.85, 132.19, 131.94, 129.93, 128.67, 127.96, 127.56, 126.81, 124.17, 122.42, 119.70. HRMS (m/z) (M+H): Calcd. for C19H14N2: 271.123, found: 271.1233. Mp 129-131℃. IR (KBr): 3350, 1609, 1571, 1445, 1283, 960. Compound 5b: 1H NMR (300 MHz, CD3Cl): δ 7.69 (d, 1H, J = 6.6 Hz), 7.44 (m, 3H), 7.38 (td, 1H, J = 7.8 Hz, J = 1.5 Hz), 7.01 (m, 2H), 6.93 (m, 2H), 6.77 (d, 1H, J = 4.5 Hz), 6.72 (dd, 1H, J = 7.8 Hz, J = 2.7 Hz), 6.63 (m, 1H), 4.97 (s, 1H). 13C NMR (100 MHz, CDCl3): δ 170.58, 160.97, 158.58, 154.50, 142.05 (J = 9 Hz), 140.90, 138.64, 132.15 (J = 6 Hz), 130.26, 129.64, 128.01, 127.45, 122.60, 120.08 (J = 9 Hz), 119.69, 114.58 (J = 23 Hz), 112.88 (J = 23 Hz). HRMS (m/z) (M+H): Calcd. for C19H13FN2: 289.1136, found: 289.1142. Mp 103-105℃. IR (KBr): 3352, 1613, 1466, 1216, 1107, 866. Compound 5c: 1H NMR (300 MHz, CD3Cl): δ 7.70 (d, 2H, J = 7.8 Hz), 7.43 (m, 3H), 7.37 (m, 1H), 6.99 (d, 1H, J = 7.5 Hz), 6.89 (m, 2H), 6.74 (d, 1H, J = 7.5 Hz), 6.60 (s, 2H), 3.77 (s, 3H). 13C NMR (100 MHz, CDCl3): δ 170.00, 156.61, 155.03, 141.67, 141.29, 135.77, 132.15, 131.94, 129.97, 129.58, 127.94, 127.44, 122.28, 120.24, 119.51, 113.13, 112.55, 55.59. HRMS (m/z) (M+H): Calcd. for C20H16N2O: 301.1335, found: 301.1339. Mp 149-152℃. IR (KBr): 3349, 2400, 1666, 1501, 1328, 1243, 1117, 960. Compound 5d: 1H NMR (300 MHz, CD3Cl): δ 7.70 (d, 2H, J = 6.9 Hz), 7.56 (s, 1H), 7.41 (m, 3H), 7.27 (m, 2H), 6.97 (m, 2H), 6.74 (t, 2H, J = 7.5 Hz), 5.12 (s, 1H). 13C NMR (100 MHz, CDCl3): δ 170.85, 153.40, 145.85, 140.77, 140.72, 132.38, 132.36, 130.41, 129.62, 128.07, 127.50, 126.01, 125.98, 123.51, 123.47, 122.93, 119.99, 119.85. HRMS (m/z) (M+H): Calcd. for C20H13F3N2: 339.1104, found: 339.1105. Mp 129-131℃. IR (KBr): 3267, 2400, 1607, 1445, 1325, 1123, 1074, 960, 751. Compound 5e: 1H NMR (300 MHz, CD3Cl): δ 7.95 (d, 1H, J = 4.8 Hz), 7.68 (d, 2H, J = 7.5 Hz), 7.56 (d, 1H, J = 7.8 Hz), 7.38 (m, 3H), 7.29 (t, 1H, J = 7.5 Hz), 7.01 (m, 2H), 6.92 (m, 1H), 6.83 (d, 1H, J = 5.1 Hz Hz), 6.19 (s, 1H). 13C NMR (100 MHz, CDCl3): δ 171.06, 153.39, 152.01, 145.05, 140.80, 136.52, 135.24, 132.51, 132.30, 130.27, 129.64, 128.01, 127.13, 122.32, 120.40, 119.98. HRMS (m/z) (M+H): Calcd. for C18H13N3: 272.1182, found: 272.1187. Mp 183-186℃. IR (KBr): 3277, 2380, 1703, 1454, 1227, 1021, 960. Compound 5f: 1H NMR (300 MHz, CD3Cl): δ 7.67 (d, 2H, J = 6.9 Hz), 7.42 (m, 3H), 7.30 (m, 2H), 6.95 (m, 3H), 6.76 (d, 1H, J = 8.1 Hz), 6.61 (d, 1H, J = 8.1 Hz). 13C NMR (100 MHz, CDCl3): δ 170.78, 154.18, 119.84, 141.75, 141.40, 140.71, 132.30, 130.39, 129.67, 129.09, 128.13, 128.04, 127.34, 126.40, 122.71, 120.58. HRMS (m/z) (M+H): Calcd. for C19H14ClN2: 305.0840, found: 305.0845. Mp 191-193℃. IR (KBr): 3274, 2336, 1601, 1423, 1255, 1064, 960. Compound 5g: 1H NMR (400 MHz, CD3Cl): δ 7.98 (s, 1H), 7,60 (m, 3H), 7.42-7.52 (m, 3H), 7,35 (t, 1H, J = 5.4 Hz), 7.03 (m, 1H), 7.01 (m, 1H), 6.79 (d, 1H, J = 7.6 Hz), 6.73 (d, 1H, J = 7.6 Hz), 5.21 (s, 1H). 13C NMR (100 MHz, CDCl3): δ 166.552, 153.289, 147.334, 140.777, 132.660, 132.477, 132.344, 130.495, 130.320, 130.045, 129.641, 128.398, 128.036, 127.399, 126.095, 122.809, 120.019, 119.592, 51.968. HRMS (m/z) (M+H): Calcd. for C21H17O2N2, 329.1284, found 329.1286. Mp 159-162℃. IR (KBr): 3285, 1238, 1078, 1054, 975, 730. Compound 5h: 1H NMR (400 MHz, CD3Cl): δ 7.60 (d, 2H, J = 8 Hz), 7.29 (m, 2H), 7.19 (m, 2H), 7.02 (m, 3H), 6.91 (t, 1H, J = 7.2 Hz), 6.77 (d, 1H, J = 8 Hz), 6.69 (d, 1H, J = 6.8 Hz), 4.97 (s, 1H). 13C NMR (100 MHz, CDCl3): δ 169.36, 154.39, 142.62, 140.95, 140.12, 138.49, 132.18, 131.82, 129.54, 128.64, 127.59, 126.57, 124.10, 122.32, 119.67, 119.66, 21.38. HRMS (m/z) (M+H): Calcd. for C20H16N2: X.-J. Wang et al. / Chinese Chemical Letters 24 (2013) 743-746 745 285.1386, found: 285.1386. Mp 168-170℃. IR (KBr): 3347, 1577, 1466, 1238, 876. Compound 5i: 1H NMR (400 MHz, CD3Cl): δ 7.59 (d, 2H, J = 7.6 Hz), 7.29 (m, 1H), 7.20 (m, 2H), 7.03 (m, 2H), 6.94 (m, 1H), 6.78 (d, 1H, J = 8 Hz), 6.71 (m, 1H), 6.62 (m, 1H), 4.92 (s, 1H), 2.40 (s, 3H). 13C NMR (100 MHz, CDCl3): δ 170.43, 160.92, 158.53, 154.43, 142.14, 140.53, 138.66, 138.06, 132.01 (J = 17 Hz), 129.62, 128.69, 127.46, 122.49, 120.11, 119.65, 114.40 (J = 24 Hz), 112.61 (J = 23 Hz), 21.36. HRMS (m/z) (M+H): Calcd. for C20H15FN2: 303.1292, found: 303.1296. Mp 145-148℃. IR (KBr): 3345, 1620, 1487, 1220, 1113, 960. Compound 5j: 1H NMR (400 MHz, CD3Cl): δ 7.60 (d, 2H, J = 7.6 Hz), 7.31 (m, 1H), 7.19 (d, 2H, J = 7.6 Hz), 7.02 (m, 1H), 6.91 (t, 1H, J = 7.6 Hz), 6.88 (s, 1H), 6.77 (d, 1H, J = 8 Hz), 6.65 (m, 2H). 13C NMR (100 MHz, CDCl3): δ 169.87, 156.60, 154.98, 141.80, 140.20, 138.47, 135.80, 132.19, 131.83, 129.59, 128.65, 127.51, 122.23, 120.18, 119.48, 112.93, 112.44, 55.59, 21.38. HRMS (m/z) (M+H): Calcd. for C21H18N2O: 315.1492, found 315.1495. Mp 178-180℃. IR (KBr): 3300, 1567, 1433, 1203, 1103, 982. Compound 5k: 1H NMR (400 MHz, CD3Cl): δ 7.60 (d, 2H, J = 8 Hz), 7.55 (m, 1H), 7.31 (m, 1H), 7.21 (m, 5H), 7.05 (m, 1H), 6.95 (m, 1H), 6.75 (m, 2H), 5.11 (s, 1H), 2.41 (s, 3H). 13C NMR (100 MHz, CDCl3): δ 170.67, 153.36, 145.84, 140.91, 140.75, 137.91, 132.41, 132.24, 129.64, 128.87, 127.58, 125.90, 125.87, 123.27, 123.24, 122.87, 119.94, 119.78, 21.42. HRMS (m/z) (M+H): Calcd. for C21H15F3N2: 353.1260, found: 353.1264. Mp 180-183℃. IR (KBr): 3309, 2740, 1637, 1325, 1076, 960, 751. Compound 5l: 1H NMR (400 MHz, CD3Cl): δ 7.93 (d, 1H, J = 4 Hz), 7.55 (m, 3H), 7.31 (t, 1H, J = 7.6 Hz), 7.21 (d, 2H, J = 7.6 Hz), 6.98 (m, 2H), 6.91 (m, 1H), 6.84 (m, 1H), 5.91 (s, 1H), 2.41 (s, 3H). 13C NMR (100 MHz, CDCl3): δ 170.93, 153.31, 151.96, 144.88, 140.62, 138.00, 136.36, 135.32, 132.42, 132.35, 129.68, 128.74, 127.17, 122.31, 120.37, 120.02, 21.42. HRMS (m/z) (M+H): Calcd. for C19H15N3: 286.1339, found: 286.1347. Mp 175-177℃. IR (KBr): 3223, 2246, 1667, 1411, 1227, 1021, 960.

  • 加载中
    1. [1]

      Ming HuangXiuju CaiYan LiuZhuofeng Ke . Base-controlled NHC-Ru-catalyzed transfer hydrogenation and α-methylation/transfer hydrogenation of ketones using methanol. Chinese Chemical Letters, 2024, 35(7): 109323-. doi: 10.1016/j.cclet.2023.109323

    2. [2]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    3. [3]

      Long JinJian HanDongmei FangMin WangJian Liao . Pd-catalyzed asymmetric carbonyl alkynylation: Synthesis of axial chiral ynones. Chinese Chemical Letters, 2024, 35(6): 109212-. doi: 10.1016/j.cclet.2023.109212

    4. [4]

      Wujun JianMong-Feng ChiouYajun LiHongli BaoSong Yang . Cu-catalyzed regioselective diborylation of 1,3-enynes for the efficient synthesis of 1,4-diborylated allenes. Chinese Chemical Letters, 2024, 35(5): 108980-. doi: 10.1016/j.cclet.2023.108980

    5. [5]

      Liangfeng YangLiang ZengYanping ZhuQiuan WangJinheng Li . Copper-catalyzed photoredox 1,4-amidocyanation of 1,3-enynes with N-amidopyridin-1-ium salts and TMSCN: Facile access to α-amido allenyl nitriles. Chinese Chemical Letters, 2024, 35(11): 109685-. doi: 10.1016/j.cclet.2024.109685

    6. [6]

      Tianze WangJunyi RenDongxiang ZhangHuan WangJianjun DuXin-Dong JiangGuiling Wang . Development of functional dye with redshifted absorption based on Knoevenagel condensation at 1-site in phenyl[b]-fused BODIPY. Chinese Chemical Letters, 2024, 35(6): 108862-. doi: 10.1016/j.cclet.2023.108862

    7. [7]

      Rui HUANGShengjie LIUQingyuan WUNanfeng ZHENG . Enhanced selectivity of catalytic hydrogenation of halogenated nitroaromatics by interfacial effects. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 201-212. doi: 10.11862/CJIC.20240356

    8. [8]

      Mengjun Zhao Yuhao Guo Na Li Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348

    9. [9]

      Shaoming DongYiming NiuYinghui PuYongzhao WangBingsen Zhang . Subsurface carbon modification of Ni-Ga for improved selectivity in acetylene hydrogenation reaction. Chinese Chemical Letters, 2024, 35(12): 109525-. doi: 10.1016/j.cclet.2024.109525

    10. [10]

      Jinyuan Cui Tingting Yang Teng Xu Jin Lin Kunlong Liu Pengxin Liu . Hydrogen spillover enhances the selective hydrogenation of α,β-unsaturated aldehydes on the Cu-O-Ce interface. Chinese Journal of Structural Chemistry, 2025, 44(1): 100438-100438. doi: 10.1016/j.cjsc.2024.100438

    11. [11]

      Zhiwei ChenHeyun ShengXue LiMenghan ChenXin LiQiuling Song . Efficient capture of difluorocarbene by pyridinium 1,4-zwitterionic thiolates: A concise synthesis of difluoromethylene-containing 1,4-thiazine derivatives. Chinese Chemical Letters, 2024, 35(4): 108937-. doi: 10.1016/j.cclet.2023.108937

    12. [12]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    13. [13]

      Chong-Yang ShiJian-Xing GongZhen LiChao ShuLong-Wu YeQing SunBo ZhouXin-Qi Zhu . Gold-catalyzed intermolecular amination of allyl azides with ynamides: Efficient construction of 3-azabicyclo[3.1.0] scaffold. Chinese Chemical Letters, 2025, 36(2): 109895-. doi: 10.1016/j.cclet.2024.109895

    14. [14]

      Wen-Tao OuyangJun JiangYan-Fang JiangTing LiYuan-Yuan LiuHong-Tao JiLi-Juan OuWei-Min He . Sono-photocatalytic amination of quinoxalin-2(1H)-ones with aliphatic amines. Chinese Chemical Letters, 2024, 35(10): 110038-. doi: 10.1016/j.cclet.2024.110038

    15. [15]

      Yan-Li LiZhi-Ming LiKai-Kai WangXiao-Long He . Beyond 1,4-addition of in-situ generated (aza-)quinone methides and indole imine methides. Chinese Chemical Letters, 2024, 35(7): 109322-. doi: 10.1016/j.cclet.2023.109322

    16. [16]

      Kuan DengFei YangZhi-Qi ChengBi-Wen RenHua LiuJiao ChenMeng-Yao SheLe YuXiao-Gang LiuHai-Tao FengJian-Li Li . Construction of wavelength-tunable DSE quinoline salt derivatives by regulating the hybridization form of the nitrogen atom and intramolecular torsion angle. Chinese Chemical Letters, 2024, 35(10): 109464-. doi: 10.1016/j.cclet.2023.109464

    17. [17]

      Yue SunLiming YangYaohang ChengGuanghui AnGuangming Li . Pd(I)-catalyzed ring-opening arylation of cyclopropyl-α-aminoamides: Access to α-ketoamide peptidomimetics. Chinese Chemical Letters, 2024, 35(6): 109250-. doi: 10.1016/j.cclet.2023.109250

    18. [18]

      An LuYuhao GuoYi YanLin ZhaiXiangyu WangWeiran CaoZijie LiZhixia ZhaoYujie ShiYuanjun ZhuXiaoyan LiuHuining HeZhiyu WangJian-Cheng Wang . Nanomedicine integrating the lipidic derivative of 5-fluorouracil, miriplatin and PD-L1 siRNA for enhancing tumor therapy. Chinese Chemical Letters, 2024, 35(6): 108928-. doi: 10.1016/j.cclet.2023.108928

    19. [19]

      Ting PanDinghu ZhangGuomei YouXiaoxia WuChenguang ZhangXinyu MiaoWenzhi RenYiwei HeLulu HeYuanchuan GongJie LinAiguo WuGuoliang Shao . PD-L1 targeted iron oxide SERS bioprobe for accurately detecting circulating tumor cells and delineating tumor boundary. Chinese Chemical Letters, 2025, 36(1): 109857-. doi: 10.1016/j.cclet.2024.109857

    20. [20]

      Yuexiang LiuXiangqiao YangTong LinGuantian YangXiaoyong XuBubing ZengZhong LiWeiping ZhuXuhong Qian . Efficient continuous synthesis of 2-[3-(trifluoromethyl)phenyl]malonic acid, a key intermediate of Triflumezopyrim, coupling with esterification-condensation-hydrolysis. Chinese Chemical Letters, 2025, 36(1): 109747-. doi: 10.1016/j.cclet.2024.109747

Metrics
  • PDF Downloads(0)
  • Abstract views(703)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return