Citation: Ying-Ying Yu, Wei Sun, Lei Dong, Hai-Dong Liu, Dan Jiang, Jun-Hai Xiao, Xiao-Hong Yang, Song Li. Design, synthesis, and screen of cathepsin K inhibitors[J]. Chinese Chemical Letters, ;2013, 24(8): 715-718. shu

Design, synthesis, and screen of cathepsin K inhibitors

  • Corresponding author: Jun-Hai Xiao,  Xiao-Hong Yang, 
  • Received Date: 6 March 2013
    Available Online: 23 April 2013

  • We synthesized a series of epoxysuccinic acid derivatives and evaluated their in vitro cathepsin K inhibitory activity The screening results show that the potency of compounds 9e, 9d, 9p, 9j and 9k (IC50≤0.005 μmol/L) were equal to or greater than that of the lead compound 9a. Less hydrophobic compounds showed weaker potency, which can be explained by the hydrophobic nature of the cathepsin K binding pockets.
  • 加载中
    1. [1]

      [1] Y.P. Li, M. Alexander, A.L. Wucherpfennig, et al., Cloning and complete coding sequence of a novel human cathepsin expressed in giant cells of osteoclastomas, J. Bone Miner. Res. 10 (1995) 1197-1202.

    2. [2]

      [2] F.H. Drake, R.A. Dodds, i.e. James, et al., Cathepsin K, but not cathepsins B, L, or S, is abundantly expressed in human osteoclasts, J. Biol. Chem. 271 (1996) 12511-12516.

    3. [3]

      [3] F. Lecaille, D. Bromme, G. Lalmanach, et al., Biochemical properties and regulation of cathepsin K activity, Biochimie 90 (2008) 208-226.

    4. [4]

      [4] K. Tezuka, Y. Tezuka, A. Maejima, et al., Molecular cloning of a possible cysteine proteinase predominantly expressed in osteoclasts, J. Biol. Chem. 269 (1994) 1106-1109.

    5. [5]

      [5] D. Bromme, K. Okamoto, B.B. Wang, et al., Human cathepsin O2, a matrix proteindegrading cysteine protease expressed in osteoclasts, J. Biol. Chem. 271 (1996) 2126-2132.

    6. [6]

      [6] D. Bromme, K. Okamoto, Human cathepsin O2, a novel cysteine protease highly expressed in osteoclastomas and ovary molecular cloning, sequencing and tissue distribution, Biol. Chem. Hoppe-Seyler 376 (1995) 379-384.

    7. [7]

      [7] T. Inaoka, G. Bilbe, O. Ishibashi, K. Tezuka, et al., Molecular cloning of human cDNA for cathepsin K: novel cysteine proteinase predominantly expressed in bone, Biochem. Biophys. Res. Commun. 206 (1995) 89-96.

    8. [8]

      [8] G.P. Shi, H.A. Chapman, S.M. Bhairi, et al., Molecular cloning of human cathepsin O, a novel endoproteinase and homologue of rabbit OC2, J. FEBS Lett. 357 (1995) 129-134.

    9. [9]

      [9] M.J. Bossard, T.A. Tomaszek, S.K. Thompson, et al., Proteolytic activity of human osteoclast cathepsin I: expression, purification, activation, and substrate identification, J. Biol. Chem. 271 (1996) 12517-12524.

    10. [10]

      [10] P. Saftig, E. Hunziker, O. Wehmeyer, et al., Impaired osteoclastic bone resorption leads to osteopetrosis in cathepsin-K-deficient mice, Proc. Natl. Acad. Sci. U.S.A. 95 (1998) 13453-13458.

    11. [11]

      [11] C. Le Gall, E. Bonnelye, P. Clézardin, Cathepsin K inhibitors as treatment of bone metastasis, Clézardin, Curr. Opin. Support. Palliat. Care 2 (2008) 218-222.

    12. [12]

      [12] J.Y. Gauthier, N. Chauret, W. Cromlish, et al., The discovery of odanacatib (MK-0822), a selective inhibitor of cathepsin K, Bioorg. Med. Chem. Lett. 18 (2008) 923-928.

    13. [13]

      [13] R. Yang, C.J. Luo, Protective effect of E64d in the traumatic brain injury of mice nerve cells, Suzhou Univ. J. Med. Sci. 31 (2011) 183-187.

    14. [14]

      [14] R. Frlan, S. Gobec, Inhibitors of cathepsin B, Curr. Med. Chem. 13 (2006) 2309-2327.

    15. [15]

      [15] V.Y.H. Hook, M. Kindy, G. Hook, Inhibitors of cathepsin B improve memory and reduce beta-amyloid in transgenic Alzheimer's disease mice expressing the wild type, but not the Swedish mutant, beta-secretase site of the amyloid precursor protein, J. Biol. Chem. 283 (2008) 7745-7753.

    16. [16]

      [16] J.J. Wang, Significance of calpain in spinal cord injury and the neuroprotective effect of its inhibitors, J. Qiqihar Med. Coll. 3 (2008) 329-332.

    17. [17]

      [17] D. Watanabe, A. Yamamoto, K. Tomoo, et al., Quantitative evaluation of each catalytic subsite of cathepsin B for inhibitory activity based on inhibitory activitybinding mode relationship of epoxysuccinyl inhibitors by X-ray crystal structure analyses of complexes, J. Mol. Biol. 362 (2006) 979-993.

    18. [18]

      [18] N. Katunuma, A. Matsui, T. Kakegawa, et al., Study of the functional share of lysosomal cathepsins by the development of specific inhibitors, Adv. Enzym. Regul. 39 (1999) 247-260.

    19. [19]

      [19] T. Masaharu, Y. Chihiro, M. Murata, et al., Efficient synthetic method for ethyl (+)-(2S, 3S)-3-[(S)-3-methyl-1-(3-methylbutylcarbamoyl)butylcarbamoyl]-2-oxiranecarb oxylate (EST), a new inhibitor of cysteine proteinases, Chem. Pharm. Bull. 35 (1987) 1098-1104.

    20. [20]

      [20] R. Yoshioka, O. Ohtsuki, T. Date, et al., Optical resolution, characterization, and Xray, crystal structures of diastereomeric salts of chiral amino acids with (S)-(-)-1-phenylethanesulfonic acid, Bull. Chem. Soc. Jpn. 67 (1994) 3012-3020.

    21. [21]

      [21] G.B. Payne, P.H. Williams, Reactions of hydrogen peroxide. IV. Sodium tungstate catalyzed epoxidation of a,b-unsaturated acids, J. Org. Chem. 24 (1959) 54-55.

    22. [22]

      [22] Analytic data for compounds. 3:[α]D20+ 107.1 (c 1.00, EtOH). 9a: Mp: 126-127℃;[α]D20+ 51.7 (c 1.00, EtOH); 1H NMR (400 MHz, CDCl3): δ 6.80 (d, 1H, J = 8.0 Hz), 6.16 (s, 1H), 4.35 (m, 1H), 4.27 (s, 2H), 3.69 (s, 1H), 3.48 (s, 1H), 3.11-3.41 (m, 2H), 1.47-1.76 (m, 4H), 1.41 (q, 2H, J = 7.0 Hz), 1.32 (t, 3H, J = 7.0 Hz), 0.85-1.04 (m, 12H); 13CNMR(100 MHz, CDCl3): δ 170.9, 166.5, 166.2, 62.3, 53.8, 52.9, 50.4, 41.3, 41.2, 24.6, 23.2, 22.8, 22.7, 22.2, 13.9, 12.3, 11.3; MS (FAB) m/z 343.2 (M+). Anal. Calcd. for C17H30N2O5: C 59.63, H 8.83, N 8.18; Found: C 59.78, H 8.60, N 7.95. IR (KBr, cm-1): 3290, 2960, 1755, 1642, 1555, 900. 9b: Mp: 138-139℃; 1H NMR (400 MHz, CDCl3): δ 8.57 (d, 1H, J = 8.4 Hz), 6.04 (s, 1H), 4.10-4.40 (m, 3H), 3.71 (s, 1H), 3.58 (s, 1H), 2.90-3.10 (m, 2H), 0.80-1.70 (m, 17H); 13C NMR (100 MHz, CDCl3): δ 170.9, 166.5, 166.0, 62.4, 53.8, 52.9, 51.4, 41.3, 41.2, 24.8, 22.8, 22.7, 22.2, 14.0, 11.3; MS (FAB) m/z 315.2 (M+). 9c: Mp: 154-156 ℃;. 1HNMR(400 MHz, CDCl3): δ 6.90 (d, 1H, J = 8.6 Hz), 7.95 (d, 1H, J = 7.6 Hz), 4.25-4.41 (m, 3H), 4.03-4.04 (m, 1H), 3.70 (s, 1H), 3.49 (s, 1H), 0.91-1.57 (m, 18H); 13C NMR (100 MHz, CDCl3): δ170.1, 166.6, 165.9, 62.3, 53.8, 52.7, 51.4, 41.6, 41.5, 24.8, 22.8, 22.5, 22.4, 22.2, 13.99; MS (FAB) m/z 315.2 (M+). 9d: Mp: 139-141 ℃; 1H NMR (400 MHz, CDCl3): δ 8.56 (d, 1H, J = 8.6 Hz), 8.03 (d, 1H, J = 7.4 Hz), 4.29-4.31 (m, 1H), 4.17-4.19 (m, 2H), 3.71 (s, 1H), 3.57 (s, 1H), 2.90-3.10 (m, 2H), 1.10-1.60 (m, 12H), 0.85-1.04 (m, 9H); 13C NMR (100 MHz, CDCl3): δ 170.9, 166.5, 166.0, 62.4, 53.8, 52.9, 51.4, 41.3, 41.2, 24.8, 23.2, 22.8, 22.7, 22.2, 14.0, 11.3; MS (FAB) m/ z 329.2 (M+). 9e: Mp: 133-135 ℃; 1H NMR (400 MHz, CDCl3): δ 6.54 (d, 1H, J = 8.4 Hz), 5.91 (s, 1H), 4.25-4.29 (m, 3H), 3.68 (s, 1H), 3.46 (s, 1H), 3.22-3.26 (m, 2H), 1.30-1.54 (m, 12H), 0.90-0.93 (m, 9H); 13C NMR (100 MHz, CDCl3): δ 170.7, 166.5, 166.0, 62.4, 53.8, 53.0, 51.3, 41.2, 39.7, 29.1, 28.9, 24.8, 22.8, 22.3, 22.1, 14.0; MS (FAB) m/z 343.2 (M+). 9f: Mp: 175-177 ℃; 1H NMR (400 MHz, CDCl3): δ 6.89 (d, 1H, J = 8.6 Hz), 6.14 (t, 1H, J = 3.2 Hz), 4.22-4.27 (m, 3H), 3.71 (d, 1H, J = 1.6 Hz), 3.54 (d, 1H, J = 1.6 Hz), 3.15-3.28 (m, 2H), 0.92-1.85 (m, 17H); 13C NMR (100 MHz, CDCl3): δ 170.2, 166.6, 165.9, 62.3, 57.6, 53.8, 52.9, 52.7, 41.3, 37.3, 25.0, 22.7, 15.2, 14.0, 11.3, 11.1; MS (FAB) m/z 315.2 (M+). 9g: Mp: 211-212 ℃; 1H NMR (400 MHz, CDCl3): δ 6.87 (d, 1H, J = 8.0 Hz), 5.84 (s, 1H), 4.15-4.29 (m, 4H), 3.70 (s, 1H), 3.55 (s, 1H), 0.90-1.81 (m, 18H); 13C NMR (100 MHz, CDCl3): δ 169.1, 166.6, 165.9, 62.3, 57.3, 53.8, 52.9, 52.7, 41.7, 37.5, 25.0, 22.8, 22.7, 22.5, 15.2, 14.0, 11.2; MS (FAB) m/z 315.2 (M+). 9h: Mp: 187-188 ℃; 1HNMR (400 MHz, CDCl3): δ 6.88 (d, 1H, J = 12.0 Hz), 6.10 (s, 1H), 4.21-4.29 (m, 3H), 3.70 (s, 1H), 3.49 (s, 1H), 3.21-3.33 (m, 2H), 0.90-1.85 (m, 19H); 13C NMR (100 MHz, CDCl3): δ 170.0, 166.6, 166.0, 62.3, 57.4, 53.9, 53.8, 52.9, 39.3, 37.3, 31.4, 25.0, 20.0, 15.3, 14.0, 13.7, 11.1; MS (FAB) m/z 329.2 (M+). 9i: Mp: 189-190 ℃; 1H NMR (400 MHz, CDCl3): δ 7.12 (m, 1H), 6.43 (s, 1H), 4.25-4.29 (m, 1H), 3.73-3.81 (m, 3H), 3.18-3.53 (m, 3H), 0.90-1.84 (m, 20H); 13C NMR (100 MHz, CDCl3): δ 170.2, 167.2, 165.9, 57.5, 53.8, 52.6, 38.2, 37.9, 37.4, 25.8, 25.0, 22.4, 22.3, 15.3, 11.1; MS (FAB) m/z 343.2 (M+). 9j: Mp: 158-159 ℃; 1H NMR (400 MHz, CDCl3): δ 6.75 (d, 1H, J = 8.2 Hz), 5.86 (s, 1H), 4.16-4.29 (m, 3H), 3.69 (s, 1H), 3.47 (s, 1H), 3.21-3.32 (m, 2H), 0.89-1.85 (m, 21H); 13C NMR (100 MHz, CDCl3): δ 169.9, 166.5,[(Fig._2)TD$FIG] Fig. 2. Molecular model of compound 9a, which binds with cathepsin K. Compound 9a is shown as a stick model and colored according to its atom color. Cathepsin K is shown as a cartoon model and colored according to its secondary structure. The S2 and S3 subsites of cathepsin K are labeled accordingly. This figure was generated with an automated molecular docking and database screening program DOCK 4.0[26]. Y.-Y. Yu et al. / Chinese Chemical Letters 24 (2013) 715-718 717 166.0, 62.4, 57.4, 57.3, 53.9, 53.0, 39.6, 37.3, 29.1, 29.0, 25.0, 22.3, 15.4, 14.0, 11.1; MS (FAB) m/z 343.2 (M+). 9k: Mp: 175-176 ℃; 1H NMR (400 MHz, CDCl3): δ 6.65 (d, 1H, J = 0.6 Hz), 5.70 (s, 1H), 4.14-4.26 (m, 3H), 3.69 (s, 1H), 3.53 (s, 1H), 3.18-3.33 (m, 2H), 0.87-1.83 (m, 23H); 13C NMR (100 MHz, CDCl3): δ 170.0, 166.5, 165.9, 62.3, 57.5, 53.8, 52.8, 39.6, 37.3, 31.4, 29.4, 26.5, 25.0, 22.5, 15.4, 14.0, 11.2; MS (FAB) m/z 357.2 (M+). 9l: Mp: 95-96 ℃; 1H NMR (400 MHz, CDCl3): δ 6.97-7.32 (m, 5H), 5.07-5.11 (m, 1H), 4.24-4.27 (m, 2H), 3.35-3.64 (m, 8H), 2.90-3.00 (m, 4H), 1.30-1.33 (m, 3H); 13C NMR (100 MHz, CDCl3): δ 169.0, 166.5, 165.3, 135.4, 129.5, 128.7, 127.5, 66.4, 66.0, 62.3, 53.8, 53.7, 52.7, 48.9, 48.8, 46.0, 42.3, 39.7, 14.0; MS (FAB) m/z 377.2 (M+). 9m: Mp: 183-185 ℃; 1H NMR (400 MHz, CDCl3): δ 6.82 (d, 1H, J = 0.4 Hz), 4.93 (s, 1H), 4.27-4.28 (m, 2H), 2.50-3.80 (m, 9H), 1.50-1.70 (m, 3H), 1.39-1.48 (m, 1H), 0.85-1.00 (m, 6H); 13C NMR (100 MHz, CDCl3): δ 169.1, 166.5, 164.9, 135.4, 129.6, 128.7, 127.4, 66.4, 66.0, 62.2, 53.8, 53.7, 52.5, 48.9, 48.8, 46.0, 42.2, 39.7, 14.1 MS (FAB) m/z 359.2 (M+). 9n: Mp: 178-179 ℃; 1H NMR (400 MHz, CDCl3): δ 6.89 (d, 1H, J = 0.8 Hz), 4.79 (s, 1H), 4.24-4.26 (m, 2H), 3.67 (s, 2H), 1.80-3.56 (m, 8H), 1.50-1.62 (m, 2H), 1.40-1.50 (m, 1H), 1.29-1.33 (m, 3H), 0.91-1.00 (m, 6H); 13C NMR (100 MHz, CDCl3): δ 169.0, 166.5, 165.3, 135.4, 129.5, 128.7, 127.5, 66.4, 65.9, 62.2, 53.8, 53.8, 52.5, 48.5, 48.3, 46.0, 42.3, 38.9, 14.0MS (FAB) m/z 327.2 (M+). 9p: Mp: 139-141 ℃; 1H NMR (400 MHz, CDCl3): δ 8.54 (d, 1H, J = 8.0 Hz), 8.0 (s, 1H), 4.26-4.30 (m, 1H), 3.66 (s, 1H), 3.44 (s, 1H), 3.11-3.47 (m, 2H), 1.47-1.76 (m, 4H), 1.41 (m, 2H), 0.85-1.04 (m, 12H); 13C NMR (100 MHz, CDCl3): δ 170.8, 166.6, 166.2, 53.8, 52.9, 50.0, 41.2, 41.2, 24.5, 23.0, 22.8, 22.7, 22.1, 13.9, 11.3; MS (FAB) m/z 315.2 (M+).

    23. [23]

      [23] M. Tamai, C. Yokoo, M. Murata, et al., Efficient synthetic method for ethyl (+)-(2S, 3S)-3-[(S)-3-methyl-1-(3-methylbutylcarbamoyl)butylcarbamoyl]-2-oxiranecarboxylate (EST), a new inhibitor of cysteine proteinases, Chem. Pharm. Bull. 35 (1987) 1098-1104.

    24. [24]

      [24] B. Zhao, C.A. Janson, B.Y. Amegadzie, et al., Crystal structure of human osteoclast cathepsin K complex with E-64, Nat. Struct. Biol. 4 (1997) 109-111.

    25. [25]

      [25] Z. Li, M. Kienetz, M.M. Cherney, et al., The crystal and molecular structures of a cathepsin K: chondroitin sulfate complex, J. Mol. Biol. 383 (2008) 78-91.

    26. [26]

      [26] T.J. Ewing, S. Makino, A.G. Skillman, et al., DOCK 4.0: search strategies for automated molecular docking of flexible molecule databases, J. Comput. Aided Mol. Des. 15 (2001) 411-428.

  • 加载中
    1. [1]

      Yulong ShiFenbei ChenMengyuan WuXin ZhangRunze MengKun WangYan WangYuheng MeiQionglu DuanYinghong LiRongmei GaoYuhuan LiHongbin DengJiandong JiangYanxiang WangDanqing Song . Chemical construction and anti-HCoV-OC43 evaluation of novel 10,12-disubstituted aloperine derivatives as dual cofactor inhibitors of TMPRSS2 and SR-B1. Chinese Chemical Letters, 2024, 35(5): 108792-. doi: 10.1016/j.cclet.2023.108792

    2. [2]

      Wenyi MeiLijuan XieXiaodong ZhangCunjian ShiFengzhi WangQiqi FuZhenjiang ZhaoHonglin LiYufang XuZhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825

    3. [3]

      Mianling YangMeehyein KimPeng Zhan . Modular miniaturized synthesis and in situ biological evaluation facilitate rapid discovery of potent MraY inhibitors as antibacterial agents. Chinese Chemical Letters, 2025, 36(2): 110455-. doi: 10.1016/j.cclet.2024.110455

    4. [4]

      Jian SongShenghui WangQiuge LiuXiao WangShuo YuanHongmin LiuSaiyang ZhangN-Benzyl arylamide derivatives as novel and potent tubulin polymerization inhibitors against gastric cancers: Design, structure–activity relationships and biological evaluations. Chinese Chemical Letters, 2025, 36(2): 109678-. doi: 10.1016/j.cclet.2024.109678

    5. [5]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    6. [6]

      Shuying LiWeiwei ZhuGeXuan SunChongzhen SunZhaojun LiuChenghe XiongMin XiaoGuofeng Gu . Convergent synthesis and immunological study of oligosaccharide derivatives related to galactomannan from Antrodia cinnamomea. Chinese Chemical Letters, 2024, 35(5): 109089-. doi: 10.1016/j.cclet.2023.109089

    7. [7]

      Shiqi XuZi YeShuang ShangFengge WangHuan ZhangLianguo ChenHao LinChen ChenFang HuaChong-Jing Zhang . Pairs of thiol-substituted 1,2,4-triazole-based isomeric covalent inhibitors with tunable reactivity and selectivity. Chinese Chemical Letters, 2024, 35(7): 109034-. doi: 10.1016/j.cclet.2023.109034

    8. [8]

      Yulin MaoJingyu MaJiecheng JiYuliang WangWanhua WuCheng Yang . Crown aldoxime ethers: Their synthesis, structure, acid-catalyzed/photo-induced isomerization and adjustable guest binding. Chinese Chemical Letters, 2024, 35(11): 109927-. doi: 10.1016/j.cclet.2024.109927

    9. [9]

      Guoping YangZhoufu LinXize ZhangJiawei CaoXuejiao ChenYufeng LiuXiaoling LinKe Li . Assembly of Y(Ⅲ)-containing antimonotungstates induced by malic acid with catalytic activity for the synthesis of imidazoles. Chinese Chemical Letters, 2024, 35(12): 110274-. doi: 10.1016/j.cclet.2024.110274

    10. [10]

      Dongdong YANGJianhua XUEYuanyu YANGMeixia WUYujia BAIZongxuan WANGQi MA . Design and synthesis of two coordination polymers for the rapid detection of ciprofloxacin based on triphenylpolycarboxylic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2466-2474. doi: 10.11862/CJIC.20240266

    11. [11]

      Jiajun LuZhehui LiaoTongxiang CaoShifa Zhu . Synergistic Brønsted/Lewis acid catalyzed atroposelective synthesis of aryl-β-naphthol. Chinese Chemical Letters, 2025, 36(1): 109842-. doi: 10.1016/j.cclet.2024.109842

    12. [12]

      Bairu MengZongji ZhuoHan YuSining TaoZixuan ChenErik De ClercqChristophe PannecouqueDongwei KangPeng ZhanXinyong Liu . Design, synthesis, and biological evaluation of benzo[4,5]thieno[2,3-d]pyrimidine derivatives as novel HIV-1 NNRTIs. Chinese Chemical Letters, 2024, 35(6): 108827-. doi: 10.1016/j.cclet.2023.108827

    13. [13]

      Zhiwei ChenHeyun ShengXue LiMenghan ChenXin LiQiuling Song . Efficient capture of difluorocarbene by pyridinium 1,4-zwitterionic thiolates: A concise synthesis of difluoromethylene-containing 1,4-thiazine derivatives. Chinese Chemical Letters, 2024, 35(4): 108937-. doi: 10.1016/j.cclet.2023.108937

    14. [14]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    15. [15]

      Jing LIANGQian WANGJunfeng BAI . Synthesis and structures of cdq-topological quaternary and (4, 4, 8)-c topological quinary Zn-MOFs with both oxalic acid and triazole ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2186-2192. doi: 10.11862/CJIC.20240177

    16. [16]

      Yuexiang LiuXiangqiao YangTong LinGuantian YangXiaoyong XuBubing ZengZhong LiWeiping ZhuXuhong Qian . Efficient continuous synthesis of 2-[3-(trifluoromethyl)phenyl]malonic acid, a key intermediate of Triflumezopyrim, coupling with esterification-condensation-hydrolysis. Chinese Chemical Letters, 2025, 36(1): 109747-. doi: 10.1016/j.cclet.2024.109747

    17. [17]

      Huimin Luan Qinming Wu Jianping Wu Xiangju Meng Feng-Shou Xiao . Templates for the synthesis of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100252-100252. doi: 10.1016/j.cjsc.2024.100252

    18. [18]

      Zhaojun Liu Zerui Mu Chuanbo Gao . Alloy nanocrystals: Synthesis paradigms and implications. Chinese Journal of Structural Chemistry, 2023, 42(11): 100156-100156. doi: 10.1016/j.cjsc.2023.100156

    19. [19]

      Zhenhao WangYuliang TangRuyu LiShuai TianYu TangDehai Li . Bioinspired synthesis of cochlearol B and ganocin A. Chinese Chemical Letters, 2024, 35(7): 109247-. doi: 10.1016/j.cclet.2023.109247

    20. [20]

      Hui JinQin CaiPeiwen LiuYan ChenDerong WangWeiping ZhuYufang XuXuhong Qian . Multistep continuous flow synthesis of Erlotinib. Chinese Chemical Letters, 2024, 35(4): 108721-. doi: 10.1016/j.cclet.2023.108721

Metrics
  • PDF Downloads(0)
  • Abstract views(789)
  • HTML views(27)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return