Citation: Kun-Huan He, Yun-Wu Li, Yong-Qiang Chen, Ze Chang. A new 8-connected self-penetrating metal-organic framework based on dinuclear cadmium clusters as secondary building units[J]. Chinese Chemical Letters, ;2013, 24(8): 691-694. shu

A new 8-connected self-penetrating metal-organic framework based on dinuclear cadmium clusters as secondary building units

  • Corresponding author: Ze Chang, 
  • Received Date: 12 March 2013
    Available Online: 16 April 2013

  • A new metal-organic framework (MOF) based on metal clusters as secondary building units (SBU), has been synthesized and structurally characterized. The reported MOF presents an interesting 8-connected self-penetrating coordination network based on dinuclear cadmium cluster with a 424·5·63 topology. Moreover, the thermal stability and luminescence property of this compound have been investigated.
  • 加载中
    1. [1]

      [1] (a) M.C. Das, S.C. Xiang, Z.J. Zhang, B.L. Chen, Functional mixed metal-organic frameworks with metalloligands, Angew. Chem. Int. Ed. 50 (2011) 10510-10520;

    2. [2]

      (b) F.N. Dai, H.Y. He, D.F. Sun, A metal-organic nanotube exhibiting reversible adsorption of (H2O)12 cluster, J. Am. Chem. Soc. 130 (2008) 14064-14065;

    3. [3]

      (c) W.G. Lu, C.Y. Su, T.B. Lu, et al., Two stable 3D metal-organic frameworks constructed by nanoscale cages via sharing the single-layer walls, J. Am. Chem. Soc. 128 (2006) 34-35;

    4. [4]

      (d) X.H. Bu, M.L. Tong, H.C. Chang, et al., A neutral 3D copper coordination polymer showing 1D open channels and the first interpenetrating NbO-type network, Angew. Chem. Int. Ed. 43 (2004) 192-195.

    5. [5]

      [2] (a) M.D. Allendorf, C.A. Bauer, R.K. Bhakta, R.J.T. Houk, Luminescent metal-organic frameworks, Chem. Soc. Rev. 38 (2009) 1330-1352;

    6. [6]

      (b) G.J. Halder, C.J. Kepert, B. Moubaraki, et al., Guest-dependent spin crossover in a nanoporous molecular framework material, Science 298 (2002) 1762-1765;

    7. [7]

      (c) J.A. Zhao, L.W. Mi, J.Y. Hu, et al., Cation exchange induced tunable properties of a nanoporous octanuclear Cu(Ⅱ) wheel with double-helical structure, J. Am. Chem. Soc. 130 (2008) 15222-15223;

    8. [8]

      (d) W.C. Song, Q. Pan, P.C. Song, et al., Two unprecedented 10-connected bct topological metal-organic frameworks constructed from cadmium clusters, Chem. Commun. 46 (2010) 4890-4892.

    9. [9]

      [3] (a) M. O'Keeffe, O.M. Yaghi, Deconstructing the crystal structures of metal-organic frameworks and related materials into their underlying nets, Chem. Rev. 112 (2012) 675-702;

    10. [10]

      (b) D.J. Tranchemontagne, J.L. Mendoza-Cortés, M. O'Keeffe, O.M. Yaghi, Secondary building units, nets and bonding in the chemistry of metal-organic frameworks, Chem. Soc. Rev. 38 (2009) 1257-1283.

    11. [11]

      [4] (a) L.J. Murray, M. Dinc, J.R. Long, Hydrogen storage in metal-organic frameworks, Chem. Soc. Rev. 38 (2009) 1294-1314;

    12. [12]

      (b) G. Férey, C. Serre, Large breathing effects in three-dimensional porous hybrid matter: facts, analyses, rules and consequences, Chem. Soc. Rev. 38 (2009) 1380-1399.

    13. [13]

      [5] (a) M. Du, Z.H. Zhang, Y.P. You, X.J. Zhao, R-Isophthalate (R = -H, -NO2, and -COOH) as modular building blocks for mixed-ligand coordination polymers incorporated with a versatile connector 4-amino-3,5-bis(3-pyridyl)-1,2,4-triazole, CrystEngComm10 (2008) 306-321;

    14. [14]

      (b) M. Du, Z.H. Zhang, L.F. Tang, et al., Molecular tectonics of metal-organic frameworks (MOFs) -a rational design strategy for unusual mixed-connected network topologies, Chem. Eur. J. 13 (2007) 2578-2586.

    15. [15]

      [6] (a) Z.M. Hao, R.Q. Fang, H.S.Wu, X.M. Zhang, Cu6S4 cluster based twelve-connected face-centered cubic and Cu19I4S12 cluster based fourteen-connected body-centered cubic topological coordination polymers, Inorg. Chem. 47 (2008) 8197-8203;

    16. [16]

      (b) X.M. Zhang, R.Q. Fang, H.S. Wu, A twelve-connected Cu6S4 cluster-based coordination polymer, J. Am. Chem. Soc. 127 (2005) 7670-7671;

    17. [17]

      (c) J.W. Cheng, S.T. Zheng, W. Liu, G.Y. Yang, An unusual eight-connected selfpenetrating ilc net constructed by dinuclear lanthanide building units, CrystEng-Comm-10 (2008) 765-769.

    18. [18]

      [7] (a) D.S. Li, F. Fu, J. Zhao, et al., Unique 3D self-penetrating Co and Ni coordination frameworks with a new (44·610·8) network topology, Dalton Trans. 39 (2010) 11522-11525;

    19. [19]

      (b) J. Zhang, Y.G. Yao, X. Bu, A comparative study of homochiral and racemic chiral metal-organic frameworks built from camphoric acid, Chem. Mater. 19 (2007) 5083-5089;

    20. [20]

      (c) D.L. Long, R.J. Hill, A.J. Blake, et al., Anion control over interpenetration and framework topology in coordination networks based on homoleptic six-connected scandium nodes, Chem. Eur. J. 11 (2005) 1384-1391;

    21. [21]

      (d) J. Yang, J.F. Ma, Y.Y. Liu, S.R. Batten, Four-, and six-connected entangled frameworks based on flexible bis(imidazole) ligands and long dicarboxylate anions, CrystEngComm-11 (2009) 151-159.

    22. [22]

      [8] (a) S.R. Zheng, Q.Y. Yang, R. Yang, et al., Metal-directed assembly of coordination polymers with a multifunctional semirigid ligand containing pyridyl and benzimidazolyl donor groups, Cryst. Growth Des. 9 (2009) 2341-2353;

    23. [23]

      (b) Y.Q. Wang, J.Y. Zhang, Q.X. Jia, et al., Unprecedented self-penetrating eightconnected network based on novel azide-bridged tetramanganese(Ⅱ) clusters, Inorg. Chem. 48 (2009) 789-791;

    24. [24]

      (c) P.K. Chen, S.R. Batten, Y. Qi, J.M. Zheng, Two 3-D cluster-based frameworks: highly eight-connected molecular topology and magnetism, Cryst. Growth Des. 9 (2009) 2756-2761;

    25. [25]

      (d) L.F. Ma, L.Y. Wang, Y.Y. Wang, et al., Self-assembly of a series of cobalt(Ⅱ) coordination polymers constructed from H2tbip and dipyridyl-based ligands, Inorg. Chem. 48 (2009) 915-924.

    26. [26]

      [9] (a) J. Yang, B. Li, J.F. Ma, et al., An unusual ten-connected self-penetrating metal-organic framework based on tetranuclear cobalt clusters, Chem. Commun. (2010) 8383-8385;

    27. [27]

      (b) D.R. Xiao, H.Y. Chen, G.J. Zhang, et al., An unprecedented (5,12)-connected 3D self-penetrating metal-organic framework based on dinuclear barium clusters as building blocks, CrystEngComm13 (2011) 433-436;

    28. [28]

      (c) D.S. Li, Y.P. Wu, P. Zhang, et al., An unprecedented eight-connected selfpenetrating coordination framework based on cage-shaped [Pb64-O)2(O2C)8] clusters, Cryst. Growth Des. 10 (2010) 2037-2040.

    29. [29]

      [10] (a) Y.Q. Lan, X.L. Wang, S.L. Li, et al., An unprecedented (6,8)-connected selfpenetrating network based on two distinct zinc clusters, Chem. Commun. (2007) 4863-4865;

    30. [30]

      (b) C. Qin, X.L. Wang, E.B. Wang, Z.M. Su, Catenation of loop-containing 2D layers with a 3D pcu skeleton into a new type of entangled framework having polyrotaxane and polycatenane character, Inorg. Chem. 47 (2008) 5555-5557;

    31. [31]

      (c) Y.Q. Lan, S.L. Li, J.S. Qin, et al., Self-assembly of 2D→2D interpenetrating coordination polymers showing polyrotaxane- and polycatenane-like motifs: influence of various ligands on topological structural diversity, Inorg. Chem. 47 (2008) 10600-10610.

    32. [32]

      [11] K.H. He, W.C. Song, Y.W. Li, et al., A new 10-connected coordination network with pentanuclear zinc clusters as secondary building units, Cryst. Growth Des. 12 (2012) 1064-1068.

    33. [33]

      [12] (a) S. Zhang, J. Lan, Z. Mao, et al., Crystal water of cadmium acetate-dependent formation of one-dimensional channel structure based on 4,40-bis(1-imidazolyl) biphenyl, Cryst. Growth Des. 8 (2008) 3134-3136;

    34. [34]

      (b) R.A. Altman, S.L. Buchwald, 4,7-Dimethoxy-1,10-phenanthroline: an excellent ligand for the Cu-catalyzed n-arylation of imidazoles, Org. Lett. 8 (2006) 2779-2782.

    35. [35]

      [13] Crystallographic data for 1 (CCDC No. 882529): C18H11N2O4Cd, Mr = 431.7, monoclinic, C2/c, a = 16.851(3)Å, b = 15.092(3)Å, c = 13.455(3)Å, α= 90°, β= 118.25(3)Å, γ = 90°, V = 3014.2(6) Å3, Z = 4. rc = 1.903 cm-3, μ = 1.476mm-1, F(0 0 0) = 1704, S = 1.014, Rint = 0.0526 (for 2231 unique reflections), R1 = 0.0418 and wR2 = 0. 0678.

    36. [36]

      [14] Q.R. Fang, G.S. Zhu, Z. Jin, et al., A multifunctional metal-organic open framework with a bcu topology constructed from undecanuclear clusters, Angew. Chem. Int. Ed. 45 (2006) 6126-6130.

    37. [37]

      [15] (a) V.A. Blatov, TOPOS 4.0 A Multipurpose Crystallochemical Analysis with the Program Package, Samara State University, Russia, 2004;

    38. [38]

      (b) Reticular Chemistry Structure Resource (RCSR), http://rcs r.anu.edu.au/.

    39. [39]

      [16] (a) X.J. Ke, D.S. Li, M. Du, Design and construction of self-penetrating coordination frameworks, Inorg. Chem. Commun. 14 (2011) 788-803;

    40. [40]

      (b) F. Luo, J.M. Zheng, G.J. Long, Unique anionic eight-connected net with 36418536 topology derived from a rare Co63-OH)2(μ-H2O)·(CO2)12 building block, Cryst. Growth Des. 9 (2009) 1271-1274.

    41. [41]

      [17] R.J. Hill, D.L. Long, N.R. Champness, et al., New approaches to the analysis of high connectivity materials: δesign frameworks based upon 44-and 63-subnet tectons, Acc. Chem. Res. 38 (2005) 337-348.

    42. [42]

      [18] (a) S. Mizukami, H. Houjou, Y. Nagawa, M. Kanesato, First helical zinc(Ⅱ) complex with a salen ligand, Chem. Commun. (2003) 1148-1149;

    43. [43]

      (b) J. Costa, R. Ruloff, L.S. Burai, et al., RigidML2Gd2 (M = Fe, Ru) complexes of a terpyridine-based heteroditopic chelate: a class of candidates for MRI contrast agents, J. Am. Chem. Soc. 127 (2005) 5147-5157.

    44. [44]

      [19] (a) J. Tao, M.L. Tong, J.X. Shi, et al., Blue photoluminescent zinc coordination polymers with supertetranuclear cores, Chem. Commun. (2000) 2043-2044;

    45. [45]

      (b) Z. Chang, A.S. Zhang, T.L. Hu, X.H. Bu, Zn(Ⅱ) coordination poylmers based on 2,3,6,7-anthracenetetracarboxylic acid: synthesis, structures, and luminescence properties, Cryst. Growth Des. 9 (2009) 4840-4846.

  • 加载中
    1. [1]

      Pingping WangHuixian MiaoKechuan ShengBin WangFan FengXuankun CaiWei HuangDayu Wu . Efficient blue-light-excitable copper(Ⅰ) coordination network phosphors for high-performance white LEDs. Chinese Chemical Letters, 2024, 35(4): 108600-. doi: 10.1016/j.cclet.2023.108600

    2. [2]

      Xiangshuai LiJian ZhaoLi LuoZhuohao JiaoYing ShiShengli HouBin Zhao . Visual and portable detection of metronidazole realized by metal-organic framework flexible sensor and smartphone scanning. Chinese Chemical Letters, 2024, 35(10): 109407-. doi: 10.1016/j.cclet.2023.109407

    3. [3]

      Yuxin WangZhengxuan SongYutao LiuYang ChenJinping LiLibo LiJia Yao . Methyl functionalization of trimesic acid in copper-based metal-organic framework for ammonia colorimetric sensing at high relative humidity. Chinese Chemical Letters, 2024, 35(6): 108779-. doi: 10.1016/j.cclet.2023.108779

    4. [4]

      Xian-Fa JiangChongyun ShaoZhongwen OuyangZhao-Bo HuZhenxing WangYou Song . Generating electron spin qubit in metal-organic frameworks via spontaneous hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109011-. doi: 10.1016/j.cclet.2023.109011

    5. [5]

      Xuying YuJiarong MiYulan HanCai SunMingsheng WangGuocong Guo . A stable radiochromic semiconductive viologen-based metal–organic framework for dual-mode direct X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109233-. doi: 10.1016/j.cclet.2023.109233

    6. [6]

      Jiayu XuMeng LiBaoxia DongLigang Feng . Fully fluorinated hybrid zeolite imidazole/Prussian blue analogs with combined advantages for efficient oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(6): 108798-. doi: 10.1016/j.cclet.2023.108798

    7. [7]

      Xiuzheng DengYi KeJiawen DingYingtang ZhouHui HuangQian LiangZhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064

    8. [8]

      Ying GaoRong ZhouQiwen WangShaolong QiYuanyuan LvShuang LiuJie ShenGuocan Yu . Natural killer cell membrane doped supramolecular nanoplatform with immuno-modulatory functions for immuno-enhanced tumor phototherapy. Chinese Chemical Letters, 2024, 35(10): 109521-. doi: 10.1016/j.cclet.2024.109521

    9. [9]

      Lei ZhuHai-Ruo LiYi-Ning MaoRuiying LiuBo ZhangJing ChenWengui XuLibo ZhangCheng-Peng Li . A four-fold interpenetrated MOF for efficient perrhenate/pertechnetate removal from alkaline nuclear effluents. Chinese Chemical Letters, 2024, 35(12): 109921-. doi: 10.1016/j.cclet.2024.109921

    10. [10]

      Guizhi ZhuJunrui TanLongfei TanQiong WuXiangling RenChanghui FuZhihui ChenXianwei Meng . Growth of CeCo-MOF in dendritic mesoporous organosilica as highly efficient antioxidant for enhanced thermal stability of silicone rubber. Chinese Chemical Letters, 2025, 36(1): 109669-. doi: 10.1016/j.cclet.2024.109669

    11. [11]

      Zhefei HuJingwen LiaoJiawen ZhouLulu ZhaoYanjuan LiuYuefei ZhangWei ChenSheng Tang . A new green approach to synthesizing MIP-202@porous silica microspheres for positional isomer/enantiomer/hydrophilic separation. Chinese Chemical Letters, 2025, 36(1): 109985-. doi: 10.1016/j.cclet.2024.109985

    12. [12]

      Jie ZHANGXin LIUZhixin LIYuting PEIYuqi YANGHuimin LIZhiqiang LIU . Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 823-833. doi: 10.11862/CJIC.20230310

    13. [13]

      Jiajing Wu Ru-Ling Tang Sheng-Ping Guo . Three types of promising functional building units for designing metal halide nonlinear optical crystals. Chinese Journal of Structural Chemistry, 2024, 43(6): 100291-100291. doi: 10.1016/j.cjsc.2024.100291

    14. [14]

      Zhao-Xia LianXue-Zhi WangChuang-Wei ZhouJiayu LiMing-De LiXiao-Ping ZhouDan Li . Producing circularly polarized luminescence by radiative energy transfer from achiral metal-organic cage to chiral organic molecules. Chinese Chemical Letters, 2024, 35(8): 109063-. doi: 10.1016/j.cclet.2023.109063

    15. [15]

      Xue-Zhi WangYi-Tong LiuChuang-Wei ZhouBei WangDong LuoMo XieMeng-Ying SunYong-Liang HuangJie LuoYan WuShuixing ZhangXiao-Ping ZhouDan Li . Amplified circularly polarized luminescence of chiral metal-organic frameworks via post-synthetic installing pillars. Chinese Chemical Letters, 2024, 35(10): 109380-. doi: 10.1016/j.cclet.2023.109380

    16. [16]

      Peipei CUIXin LIYilin CHENZhilin CHENGFeiyan GAOXu GUOWenning YANYuchen DENG . Transition metal coordination polymers with flexible dicarboxylate ligand: Synthesis, characterization, and photoluminescence property. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2221-2231. doi: 10.11862/CJIC.20240234

    17. [17]

      Ziyi Zhu Yang Cao Jun Zhang . CO2-switched porous metal-organic framework magnets. Chinese Journal of Structural Chemistry, 2024, 43(2): 100241-100241. doi: 10.1016/j.cjsc.2024.100241

    18. [18]

      Muhammad Riaz Rakesh Kumar Gupta Di Sun Mohammad Azam Ping Cui . Selective adsorption of organic dyes and iodine by a two-dimensional cobalt(II) metal-organic framework. Chinese Journal of Structural Chemistry, 2024, 43(12): 100427-100427. doi: 10.1016/j.cjsc.2024.100427

    19. [19]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    20. [20]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

Metrics
  • PDF Downloads(0)
  • Abstract views(710)
  • HTML views(22)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return