Citation: Shin-ichi Kawano, Yusuke Inohana, Yuki Hashi, Jin-Ming Lin. Analysis of keto-enol tautomers of curcumin by liquid chromatography/mass spectrometry[J]. Chinese Chemical Letters, ;2013, 24(8): 685-687. shu

Analysis of keto-enol tautomers of curcumin by liquid chromatography/mass spectrometry

  • Corresponding author: Jin-Ming Lin, 
  • Received Date: 4 March 2013
    Available Online: 23 April 2013

  • Keto-enol tautomers of curcumin were confirmed by reversed-phase liquid chromatography (RPLC)/ hybrid quadrupole ion trap/time-of-flight mass spectrometry (QIT/TOFMS). Tautomers gave different MS/MS spectra in negative mode. Different mass spectra were also obtained by hydrogen/deuterium exchange LC/MS/MS in positive mode. Our results suggest that enol form is the major form in the solution (water/acetonitrile).
  • 加载中
    1. [1]

      [1] B.B. Aggarwal, K.B. Harikumar, Potential therapeutic effects of curcumin, the antiinflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases, Int. J. Biochem. Cell Biol. 41 (2009) 40-59.

    2. [2]

      [2] R.A. Sharma, A.J. Gescher, W.P. Steward, Curcumin: the story so far, Eur. J. Cancer 41 (2005) 1955-1968.

    3. [3]

      [3] S. Bengmark, M.D. Mesa, A. Gil, Plant-derived health: the effect of turmeric and curcuminoids, Nutr. Hosp. 24 (2009) 273-281.

    4. [4]

      [4] K. Balasubramanian, Molecular orbital basis for yellow curry spice curcumin's prevention of Alzheimer's disease, J. Agric. Food Chem. 54 (2006) 3512-3520.

    5. [5]

      [5] H. Hatcher, R. Planalp, J. Cho, F.M. Torti, S.V. Torti, Curcumin: from ancient medicine to current clinical trials, Cell. Mol. Life Sci. 65 (2008) 1631-1652.

    6. [6]

      [6] R.F. Tayyem, D.D. Heath, W.K. Al-Delaimy, C.L. Rock, Curcumin content of turmeric and curry powders, Nutr. Cancer 55 (2006) 126-131.

    7. [7]

      [7] W. Wichitnithad, N. Jongaroonngamsang, S. Pummangura, P. Rojsitthisak, A simple isocratic HPLC method for the simultaneous determination of curcuminoids in commercial turmeric extracts, Phytochem. Anal. 20 (2009) 314-319.

    8. [8]

      [8] J. Zhang, S. Jinnai, R. Ikeda, M. Wada, S. Hayashida, K. Nakashima, A simple HPLCfluorescence method for quantitation of curcuminoids and its application to turmeric products, Anal. Sci. 25 (2009) 385-388.

    9. [9]

      [9] A. Liu, H. Lou, L. Zhao, P. Fan, Validated LC/MS/MS assay for curcumin and tetrahydrocurcumin in rat plasma and application to pharmacokinetic study of phospholipid complex of curcumin, J. Pharm. Biomed. Anal. 40 (2006) 720-727.

    10. [10]

      [10] K. Yang, L. Lin, T. Tseng, S. Wang, T. Tsai, Oral bioavailability of curcumin in rat and the herbal analysis from Curcuma longa by LC-MS/MS, J. Chromatogr. B 853 (2007) 183-189.

    11. [11]

      [11] J. Li, Y. Jiang, J. Wen, G. Fan, Y. Wu, C. Zhang, A rapid and simple HPLC method for the determination of curcumin in rat plasma: assay development, validation and application to a pharmacokinetic study of curcumin liposome, Biomed. Chromatogr. 23 (2009) 1201-1207.

    12. [12]

      [12] J.R. Fuchs, B. Pandit, D. Bhasin, et al., Structure-activity relationship studies of curcumin analogues, Bioorg. Med. Chem. Lett. 19 (2009) 2065-2069.

    13. [13]

      [13] D. Yanagisawa, N. Shirai, T. Amatsubo, et al., Relationship between the tautomeric structures of curcumin derivatives and their Ab-binding activities in the context of the therapies for Alzheimer's disease, Biomaterials 31 (2010) 4179-4185.

    14. [14]

      [14] T.J. Novak, R. Helmy, I. Santos, Liquid chromatography-mass spectrometry using the hydrogen/deuterium exchange reaction as a tool for impurity identification in pharmaceutical process development, J. Chromatogr. B 825 (2005) 161-168.

    15. [15]

      [15] D.Q. Liu, L. Wu, M. Sun, P.A. MacGregor, On-line H/D exchange LC-MS strategy for structural elucidation of pharmaceutical impurities, J. Pharm. Biomed. Anal. 44 (2007) 320-329.

    16. [16]

      [16] T.M. Kolev, E.A. Velcheva, B.A. Stamboliyska, M. Spiteller, DFT and experimental studies of the structure and vibrational spectra of curcumin, Int. J. Quantum Chem. 102 (2005) 1069-1079.

    17. [17]

      [17] H. Jiang, Á. Somogyi, N.E. Jacobsen, B.N. Timmermann, D.R. Gang, Analysis of curcuminoids by positive and negative electrospray ionization and tandem mass spectrometry, Rapid Commun. Mass Spectrom. 20 (2006) 1001-1012.

    18. [18]

      [18] F. Payton, P. Sandusky, W.L. Alworth, NMR study of the solution structure of curcumin, J. Nat. Prod. 70 (2007) 143-146.

  • 加载中
    1. [1]

      Ying XuChengying ShenHailong YuanWei Wu . Mapping multiple phases in curcumin binary solid dispersions by fluorescence contrasting. Chinese Chemical Letters, 2024, 35(9): 109324-. doi: 10.1016/j.cclet.2023.109324

    2. [2]

      Haijiao LiMingzu ZhangJinlin HeJian LiuXingwei SunPeihong Ni . Synthesis of curcumin polyprodrug via click chemistry and construction of dual-drug-loaded nano platform for highly efficient tumor treatment. Chinese Chemical Letters, 2025, 36(8): 110615-. doi: 10.1016/j.cclet.2024.110615

    3. [3]

      Qi HuangJun LiaoJingjing LiZhengyan GuXinkang ZhangMingxue SunWenqi MengGuanchao MaoZhipeng PeiShanshan ZhangSongling LiChuan ZhangYunqin WangJihao LiuTingbin ShuMin TaoYing LuKai XiaoQingqiang XuJincai Lu . Curcumin-loaded ceria nanoenzymes for dual-action suppression of inflammation and alleviation of oxidative damage in the treatment of acute lung injury. Chinese Chemical Letters, 2025, 36(4): 109914-. doi: 10.1016/j.cclet.2024.109914

    4. [4]

      Tian FengYun-Ling GaoDi HuKe-Yu YuanShu-Yi GuYao-Hua GuSi-Yu YuJun XiongYu-Qi FengJie WangBi-Feng Yuan . Chronic sleep deprivation induces alterations in DNA and RNA modifications by liquid chromatography-mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(8): 109259-. doi: 10.1016/j.cclet.2023.109259

    5. [5]

      Cheng GuoXiaoxiao ZhangXiujuan HongYiqiu HuLingna MaoKezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867

    6. [6]

      Feng-Qing HuangYu WangJi-Wen WangDai YangShi-Lei WangYuan-Ming FanRaphael N. AlolgaLian-Wen Qi . Chemical isotope labeling-assisted liquid chromatography-mass spectrometry enables sensitive and accurate determination of dipeptides and tripeptides in complex biological samples. Chinese Chemical Letters, 2024, 35(11): 109670-. doi: 10.1016/j.cclet.2024.109670

    7. [7]

      Tong ZhangXiaojing LiangLicheng WangShuai WangXiaoxiao LiuYong Guo . An ionic liquid assisted hydrogel functionalized silica stationary phase for mixed-mode liquid chromatography. Chinese Chemical Letters, 2025, 36(1): 109889-. doi: 10.1016/j.cclet.2024.109889

    8. [8]

      Wangyan HuKe LiXiangnan DouNing LiXiayan Wang . Nano-sized stationary phase packings retained by single-particle frit for microchip liquid chromatography. Chinese Chemical Letters, 2024, 35(4): 108806-. doi: 10.1016/j.cclet.2023.108806

    9. [9]

      Junmeng LuoQiongqiong WanSuming Chen . Chemistry-driven mass spectrometry for structural lipidomics at the C=C bond isomer level. Chinese Chemical Letters, 2025, 36(1): 109836-. doi: 10.1016/j.cclet.2024.109836

    10. [10]

      Lu HuangJiang WangHong JiangLanfang ChenHuanwen Chen . On-line determination of selenium compounds in tea infusion by extractive electrospray ionization mass spectrometry combined with a heating reaction device. Chinese Chemical Letters, 2025, 36(1): 109896-. doi: 10.1016/j.cclet.2024.109896

    11. [11]

      Yanhua ChenXian DingJun ZhouZhaoying WangYunhai BoYing HuQingce ZangJing XuRuiping ZhangJiuming HeFen YangZeper Abliz . Plasma metabolomics combined with mass spectrometry imaging reveals crosstalk between tumor and plasma in gastric cancer genesis and metastasis. Chinese Chemical Letters, 2025, 36(1): 110351-. doi: 10.1016/j.cclet.2024.110351

    12. [12]

      Haiyan LuJiayue YeYiping WeiHua ZhangKonstantin ChinginVladimir FrankevichHuanwen Chen . Tracing molecular margins of lung cancer by internal extractive electrospray ionization mass spectrometry. Chinese Chemical Letters, 2025, 36(2): 110077-. doi: 10.1016/j.cclet.2024.110077

    13. [13]

      Keqiang ShiXiujuan HongDongyan XuTao PanHuiwen WangHongru FengCheng GuoYuanjiang Pan . Analysis of RNA modifications in peripheral white blood cells from breast cancer patients by mass spectrometry. Chinese Chemical Letters, 2025, 36(3): 110079-. doi: 10.1016/j.cclet.2024.110079

    14. [14]

      Wen SuSiying LiuQingfu ZhangZhongyan ZhouNa WangLei Yue . Temperature-controlled electrospray ionization tandem mass spectrometry study on protein/small molecule interaction. Chinese Chemical Letters, 2025, 36(5): 110237-. doi: 10.1016/j.cclet.2024.110237

    15. [15]

      Peisi XieJing ChenYongjun XiaZongwei Cai . MALDI and MALDI-2 mass spectrometry imaging contribute to revealing the alternations in lipid metabolism in germinating soybean seeds. Chinese Chemical Letters, 2025, 36(8): 110595-. doi: 10.1016/j.cclet.2024.110595

    16. [16]

      Haoyang WangRonghao ZhangYanlun RenLi Zhang . A convenient method for measuring gas-liquid volumetric mass transfer coefficient in micro reactors. Chinese Chemical Letters, 2024, 35(4): 108833-. doi: 10.1016/j.cclet.2023.108833

    17. [17]

      Fangqing ZhangYu WangZhenda TanYangbin LiuLijuan SongXiaoming Feng . Catalytic asymmetric inverse-electron-demand Diels–Alder reaction of 2-pyrones with aryl enol ethers. Chinese Chemical Letters, 2025, 36(7): 110581-. doi: 10.1016/j.cclet.2024.110581

    18. [18]

      Jindong HaoYufen LvShuyue TianChao MaWenxiu CuiHuilan YueWei WeiDong Yi . Additive-free synthesis of β-keto phosphorodithioates via geminal hydro-phosphorodithiolation of sulfoxonium ylides with P4S10 and alcohols. Chinese Chemical Letters, 2024, 35(9): 109513-. doi: 10.1016/j.cclet.2024.109513

    19. [19]

      Xiaoyu DuHuan Wang . Tailoring mass transfer on electrochemical fixation of air-abundant molecules. Chinese Chemical Letters, 2025, 36(8): 110276-. doi: 10.1016/j.cclet.2024.110276

    20. [20]

      Hongxia LiXiyang WangDu QiaoJiahao LiWeiping ZhuHonglin Li . Mechanism of nanoparticle aggregation in gas-liquid microfluidic mixing. Chinese Chemical Letters, 2024, 35(4): 108747-. doi: 10.1016/j.cclet.2023.108747

Metrics
  • PDF Downloads(0)
  • Abstract views(1100)
  • HTML views(37)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return