Citation: Ning Zhang, Chong-Xi Wang, Jin-Hao Liu, Jin-Feng Xing, An-Jie Dong. A kind of modified bovine serum albumin with great potential for applying in gene delivery[J]. Chinese Chemical Letters, ;2013, 24(07): 659-662. shu

A kind of modified bovine serum albumin with great potential for applying in gene delivery

  • Corresponding author: Jin-Feng Xing, 
  • Received Date: 15 March 2013
    Available Online: 12 April 2013

  • Bovine serum albumin (BSA) was modified through a facile synthesis method to increase its isoelectric point (pI) from 4.8 to 6.0. When pH is higher than 6.0, the protein shows a negative surface charge, on the contrary, the protein is positively charged. In this study, the charge-reversal modified BSA (crBSA) was utilized to assemble with the binary complexes of pDNA/poly(vinylpyrrolidone)-graft-poly(2-dimethylaminoethyl methacrylate) (pDNA/PVP-g-PDMAEMA) to shield the excess positive charges of complexes at physiological pH (pH 7.4). When the complex coated with crBSA located in the environment at endosomal pH (pH 5.0), the charge-reversal of crBSA led to the deviation of crBSA from polyplex by electrostatic repulsion, which would benefit the transfection of the target gene. The crBSA shows great potential for improving the transfection efficiency of pDNA/PVP-g-PDMAEMA.
  • 加载中
    1. [1]

      [1] F.J. Xu, W.T. Yang, Polymer vectors via controlled/living radical polymerization for gene delivery, Prog. Polym. Sci. 36 (2011) 1099-1131.

    2. [2]

      [2] F.M. Kievit, O. Veiseh, N. Bhattarai, et al., PEI-PEG-chitosan-copolymer-coated iron oxide nanoparticles for safe gene delivery: synthesis, complexation, and transfection, Adv. Funct. Mater. 19 (2009) 2244-2251.

    3. [3]

      [3] C. Zhang, S.J. Gao, W. Jiang, et al., Targeted minicircle DNA delivery using folatepoly(ethylene glycol)-polyethylenimine as non-viral carrier, Biomaterials 31 (2010) 6075-6086.

    4. [4]

      [4] S.B. Hartono, W. Gu, F. Kleitz, et al., Poly-L-lysine functionalized large pore cubic mesostructured silica nanoparticles as biocompatible carriers for gene delivery, ACS Nano 6 (2012) 2104-2117.

    5. [5]

      [5] Y. Qiao, Y. Huang, C. Qiu, et al., The use of PEGylated poly 2-(N,N-dimethylamino) ethyl methacrylate as a mucosal DNA delivery vector and the activation of innate immunity and improvement of HIV-1-specific immune responses, Biomaterials 31 (2010) 115-123.

    6. [6]

      [6] S.T. Guo, Y. Qiao, W. Wang, et al., Poly(epsilon-caprolactone)-graft-poly(2-(N,Ndimethylamino) ethyl methacrylate) nanoparticles: pH dependent thermo-sensitive multifunctional carriers for gene and drug delivery, J. Mater. Chem. 20 (2010) 6935-6941.

    7. [7]

      [7] X. Jiang, M.C. Lok, W.E. Hennink, Degradable-brushed pHEMA-pDMAEMA synthesized via ATRP and click chemistry for gene delivery, Bioconjug. Chem. 18 (2007) 2077-2084.

    8. [8]

      [8] J.J. Green, R. Langer, D.G. Anderson, A combinatorial polymer library approach yields insight into nonviral gene delivery, Acc. Chem. Res. 41 (2008) 749-759.

    9. [9]

      [9] M. Thibault, S. Nimesh, M. Lavertu, M.D. Buschmann, Intracellular trafficking and decondensation kinetics of chitosan-pDNA polyplexes, Mol. Ther. 18 (2010) 1787-1795.

    10. [10]

      [10] M.L. Patil, M. Zhang, T. Minko, Multifunctional triblock nanocarrier (PAMAM-PEG-PLL) for the efficient intracellular siRNA delivery and gene silencing, ACS Nano 5 (2011) 1877-1887.

    11. [11]

      [11] X. Guo, L. Huang, Recent advances in nonviral vectors for gene delivery, Acc. Chem. Res. 45 (2012) 971-979.

    12. [12]

      [12] D.N. Nguyen, J.J. Green, J.M. Chan, R. Longer, D.G. Anderson, Polymeric materials for gene delivery and DNA vaccination, Adv. Mater. 21 (2009) 847-867.

    13. [13]

      [13] O.C. Farokhzad, R. Langer, Impact of nanotechnology on drug delivery, ACS Nano 3 (2009) 16-20.

    14. [14]

      [14] D.S. Lin, Y.Y. Huang, Q. Jiang, et al., Structural contributions of blocked or grafted poly(2-dimethylaminoethyl methacrylate) on PEGylated polycaprolactone nanoparticles in siRNA delivery, Biomaterials 32 (2011) 8730-8742.

    15. [15]

      [15] X.Y. Yue, W.D. Zhang, J.F. Xing, et al., Self-assembled cationic triblock copolymer mPEG-b-PDLLA-b-PDMA nanoparticles as nonviral gene vector, Soft Matter 8 (2012) 2252-2260.

    16. [16]

      [16] J.B. Zhou, J. Liu, C.J. Cheng, et al., Biodegradable poly(amine-co-ester) terpolymers for targeted gene delivery, Nat. Mater. 11 (2012) 82-90.

    17. [17]

      [17] D.W. Pack, A.S. Hoffman, S. Pun, P.S. Stayton, Design and development of polymers for gene delivery, Nat. Rev. Drug Discov. 4 (2005) 581-593.

    18. [18]

      [18] B. Zhang, L.D. Deng, J.F. Xing, J. Yang, A.J. Dong, Improved biocompatibility of poly(vinylpyrrolidone)-graft-poly(2-dimethylaminoethyl methacrylate)/DNA complexes by coating with bovine serum albumin, Chin. Chem. Lett. 23 (2012) 627-630.

    19. [19]

      [19] S.T. Guo, Y. Huang, Q. Jiang, et al., Enhanced gene delivery and siRNA silencing by gold nanoparticles coated with charge-reversal polyelectrolyte, ACS Nano 4 (2010) 5505-5511.

    20. [20]

      [20] W. Lu, Y. Zhang, Y.Z. Tan, et al., Cationic albumin-conjugated pegylated nanoparticles as novel drug carrier for brain delivery, J. Control. Release 107 (2005) 428-448.

    21. [21]

      [21] Y.Q. Xia, E.Q. Chen, D.H. Liang, Recognition of single-and double-stranded oligonucleotides by bovine serum albumin via nonspecific interactions, Biomacromolecules 11 (2010) 3158-3166.

  • 加载中
    1. [1]

      Zhaomin TangQian HeJianren ZhouShuang YanLi JiangYudong WangChenxing YaoHuangzhao WeiKeda YangJiajia Wang . Active-transporting of charge-reversal Cu(Ⅱ)-doped mesoporous silica nanoagents for antitumor chemo/chemodynamic therapy. Chinese Chemical Letters, 2024, 35(7): 109742-. doi: 10.1016/j.cclet.2024.109742

    2. [2]

      Jiaqi HuangRenjiang KongYanmei LiNi YanYeyang WuZiwen QiuZhenming LuXiaona RaoShiying LiHong Cheng . Feedback enhanced tumor targeting delivery of albumin-based nanomedicine to amplify photodynamic therapy by regulating AMPK signaling and inhibiting GSTs. Chinese Chemical Letters, 2024, 35(8): 109254-. doi: 10.1016/j.cclet.2023.109254

    3. [3]

      Fangwen Peng Zhen Luo Yingjin Ma Haibo Ma . Theoretical study of aromaticity reversal in dimethyldihydropyrene derivatives. Chinese Journal of Structural Chemistry, 2024, 43(5): 100273-100273. doi: 10.1016/j.cjsc.2024.100273

    4. [4]

      Ling YangMin RenJie WangLiming HeShanshan WuShuai YangWei ZhaoHao ChengXiaoming ZhouMaling Gou . A non-viral gene therapy for melanoma by staphylococcal enterotoxin A. Chinese Chemical Letters, 2024, 35(5): 108822-. doi: 10.1016/j.cclet.2023.108822

    5. [5]

      Makhloufi ZoulikhaZhongjian ChenJun WuWei He . Approved delivery strategies for biopharmaceuticals. Chinese Chemical Letters, 2025, 36(2): 110225-. doi: 10.1016/j.cclet.2024.110225

    6. [6]

      Yan LiuYang WangJiayi ZhuXuxian SuXudong LinLiang XuXiwen Xing . Employing pH-responsive RNA triplex to control CRISPR/Cas9-mediated gene manipulation in mammalian cells. Chinese Chemical Letters, 2024, 35(9): 109427-. doi: 10.1016/j.cclet.2023.109427

    7. [7]

      Shengdong Sun Cheng Wang Shikuo Li . Interfacial channel design on the charge migration for photoelectrochemical applications. Chinese Journal of Structural Chemistry, 2024, 43(12): 100398-100398. doi: 10.1016/j.cjsc.2024.100398

    8. [8]

      Linghui ZouMeng ChengKaili HuJianfang FengLiangxing Tu . Vesicular drug delivery systems for oral absorption enhancement. Chinese Chemical Letters, 2024, 35(7): 109129-. doi: 10.1016/j.cclet.2023.109129

    9. [9]

      Fengjie LiuFansu MengZhenjiang YangHuan WangYuehong RenYu CaiXingwang Zhang . Exosome-biomimetic nanocarriers for oral drug delivery. Chinese Chemical Letters, 2024, 35(9): 109335-. doi: 10.1016/j.cclet.2023.109335

    10. [10]

      Zhili LiQijun WoDongdong HuangDezhong ZhouLei GuoYeqing Mao . Improving gene transfection efficiency of highly branched poly(β-amino ester)s through the in-situ conversion of inactive terminal groups. Chinese Chemical Letters, 2024, 35(8): 109737-. doi: 10.1016/j.cclet.2024.109737

    11. [11]

      Min HuangRu ChengShuai WenLiangtong LiJie GaoXiaohui ZhaoChunmei LiHongyan ZouJian Wang . Ultrasensitive detection of microRNA-21 in human serum based on the confinement effect enhanced chemical etching of gold nanorods. Chinese Chemical Letters, 2024, 35(9): 109379-. doi: 10.1016/j.cclet.2023.109379

    12. [12]

      Fangping YangJin ShiYuansong WeiQing GaoJingrui ShenLichen YinHaoyu Tang . Mixed-charge glycopolypeptides as antibacterial coatings with long-term activity. Chinese Chemical Letters, 2025, 36(2): 109746-. doi: 10.1016/j.cclet.2024.109746

    13. [13]

      Qin YuHaisheng HeJianping QiYi LuWei Wu . Oral delivery of insulin by barbed microneedles actuated by intestinal peristalsis. Chinese Chemical Letters, 2024, 35(9): 109888-. doi: 10.1016/j.cclet.2024.109888

    14. [14]

      Jing ZhangCharles WangYaoyao ZhangHaining XiaYujuan WangKun MaJunfeng Wang . Application of magnetotactic bacteria as engineering microrobots: Higher delivery efficiency of antitumor medicine. Chinese Chemical Letters, 2024, 35(10): 109420-. doi: 10.1016/j.cclet.2023.109420

    15. [15]

      Yujie LiYa-Nan WangYin-Gen LuoHongcai YangJinrui RenXiao Li . Advances in synthetic biology-based drug delivery systems for disease treatment. Chinese Chemical Letters, 2024, 35(11): 109576-. doi: 10.1016/j.cclet.2024.109576

    16. [16]

      Weiyu ChenZenghui LiChenguang ZhaoLisha ZhaJunfeng ShiDan Yuan . Enzyme-modulate conformational changes in amphiphile peptide for selectively cell delivery. Chinese Chemical Letters, 2024, 35(12): 109628-. doi: 10.1016/j.cclet.2024.109628

    17. [17]

      Qiang Zhang Weiran Gong Huinan Che Bin Liu Yanhui Ao . S doping induces to promoted spatial separation of charge carriers on carbon nitride for efficiently photocatalytic degradation of atrazine. Chinese Journal of Structural Chemistry, 2023, 42(12): 100205-100205. doi: 10.1016/j.cjsc.2023.100205

    18. [18]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Boosting bulk charge transport of CuWO4 photoanodes via Cs doping for solar water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100207-100207. doi: 10.1016/j.cjsc.2023.100207

    19. [19]

      Zhe LiPing-Zhao LiangLi XuFei-Yu YangTian-Bing RenLin YuanXia YinXiao-Bing Zhang . Three positive charge nonapoptotic-induced photosensitizer with excellent water solubility for tumor therapy. Chinese Chemical Letters, 2024, 35(8): 109190-. doi: 10.1016/j.cclet.2023.109190

    20. [20]

      Chang LiuZirui SongXinglan DengShihong XuRenji ZhengWentao DengHongshuai HouGuoqiang ZouXiaobo Ji . Interfacial/bulk synergetic effects accelerating charge transferring for advanced lithium-ion capacitors. Chinese Chemical Letters, 2024, 35(6): 109081-. doi: 10.1016/j.cclet.2023.109081

Metrics
  • PDF Downloads(0)
  • Abstract views(575)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return