Citation: Dao-Lin Wang, Zhe Dong, Jiao Xu, Di Li. An efficient synthesis of 2-(guaiazulen-1-yl)furan derivatives via intramolecular Wittig reactions[J]. Chinese Chemical Letters, ;2013, 24(07): 622-624.
-
An efficient and mild synthesis of 2-(guaiazulen-1-yl)furans, starting from easily accessible 1-(3-aryl-2-cyanopropenoyl)guaiazulenes, tributylphosphine and acyl chlorides, is described. The strategy employs the intramolecular Wittig protocol as a key step to append the crucial furan ring, leading to the highly functional furans in good yields.
-
Keywords:
- Guaiazulene,
- Furan,
- Intramolecular Wittig reaction
-
-
[1]
[1] A.R. Katrizky, C.W. Rees, E.F.V. Scriven, R.J.K. Taylor (Eds.), Comprehensive Heterocyclic Chemistry Ⅲ, 3, Pergamon Press, New York, 2008, p. 389.
-
[2]
[2] (a) M.T. Goldani, R. Sandaroos, S. Damavandi, One-pot synthesis of acenaphtho[l, 2-b]furan derivatives, Chin. Chem. Lett. 23 (2012) 169-172;
-
[3]
(b) E.K. Ahmed, M.A. Ameen, Synthesis of thiopyrano[4',3':4',5'] pyrido[3',2':4,5]furo[3,2-d]pyrimidines, Chin. Chem. Lett. 21 (2010) 669-673;
-
[4]
(c) H.K. Lee, K.F. Chan, C.W. Hui, et al., Use of furans in synthesis of bioactive compounds, Pure Appl. Chem. 77 (2005) 139-144;
-
[5]
(d) B.A. Keay, Synthesis ofmulti-substituted furan rings: the role of silicon, Chem. Soc. Rev. 28 (1999) 209-215;
-
[6]
(e) X.L.Hou,H.Y.Cheung, T.Y.Hon, et al.,Regioselective syntheses of substituted furans, Tetrahedron 54 (1998) 1955-2020.
-
[7]
[3] B.M. Heron, Heterocycles from intramolecular wittig, horner and wadsworthemmons reactions, Heterocycles 41 (1995) 2357-2386.
-
[8]
[4] (a) K.W. Chen, S. Syu, Y.J. Jang, et al., A facile approach to highly functional trisubstituted furans via intramolecular wittig reactions, Org. Biomol. Chem. 9 (2011) 2098-2106;
-
[9]
(b) T.T. Kao, S. Syu, W. Lin, Preparation of tetrasubstituted furans via intramolecular wittig reactions with phosphorus ylides as intermediates, Org. Lett. 12 (2010) 3066-3069;
-
[10]
(c) C.J. Lee, Y.J. Jang, Z.Z. Wu, et al., Preparation of functional phosphorus zwitterions from activated alkanes, aldehydes, and tributylphosphine: synthesis of polysubstituted furo[3,2-c]coumarins, Org. Lett. 14 (2012) 1906-1909.
-
[11]
[5] H. Yamazaki, S. Irono, A. Uchida, et al., Pharmacology of guaiazulene, with special reference to anti-inflammatory effect due to histamine-release inhibition, Nippon Yakurigaku Zasshi 54 (1958) 362-377.
-
[12]
[6] T. Yanagisawa, S. Wakabayashi, T. Tomiyama, et al., Synthesis and anti-ulcer activities of sodiumalkylazulene sulfonates, Chem. Pharm. Bull. 36 (1988) 641-647.
-
[13]
[7] (a) A.E. Asato, A. Peng, M.Z. Hossain, et al., Azulenic retinoids: novel nonbenzenoid aromatic retinoids with anticancer activity, J. Med. Chem. 36 (1993) 3137-3147;
-
[14]
(b) B.C. Hong, F.Y. Jiang, E.S. Kumar, Microwave-assisted [6+4]-cycloaddition of fulvenes anda-pyrones to azulene-indoles: facile syntheses of novel antineoplastic agents, Bioorg. Med. Chem. Lett. 11 (2001) 1981-1984.
-
[15]
[8] D.A. Becker, J.J. Ley, L. Echegoyen, et al., Stilbazulenyl nitrone (STAZN): a nitronylsubstituted hydrocarbon with the potency of classical phenolic chain-breaking antioxidants, J. Am. Chem. Soc. 124 (2002) 4678-4684.
-
[16]
[9] (a) T. Morita, T. Nakadate, K. Takase, A facile method for the synthesis of azuleno[2,1-b]furan and azuleno[2,1-b]pyrrole derivatives and their some properties, Heterocycles 15 (1981) 835-838;
-
[17]
(b) K. Fujimori, T. Fujita, K. Yamane, et al., Synthesis of azuleno[1,2-b]-and azuleno[1,2-c]thiophenes by the reactions of 2H-cyclohepta[b]furan-2-ones with enamines of 3-oxotetrahydrothiophenes, Chem. Lett. 12 (1983) 1721-1724;
-
[18]
(c) K. Fujimori, H. Fukazawa, Y. Nezu, et al., Synthesis of azuleno[1,2-b]pyrrole and azuleno[1,2-b]furan, Chem. Lett. 15 (1986) 1021-1024.
-
[19]
[10] (a) D.L. Wang, S.F. Li, W. Li, et al., An efficient synthesis of 3-(guaiazulene-1-yl)succinimides by addition of guaiazulene to maleimides, Chin. Chem. Lett. 22 (2011) 789-792;
-
[20]
(b) D.L. Wang, J.Y. Yu, W. Li, et al., Synthesis of naphthylazuleno[2, 1-d]pyrimidin-4-amines, Chin. J. Org. Chem. 32 (2012) 1547-1551;
-
[21]
(c) D.L. Wang, D. Li, L. Cao, Synthesis of 1-(2-amino-3,5-dicyano-4-aryl-4Hpyran-6-yl)guaiazulenes, Chin. J. Org. Chem. 32 (2012) 1741-1745;
-
[22]
(d) D.L. Wang, Q.T. Cui, S.S. Feng, et al., A new synthesis approach to azuleno[2,1-b]pyridine-4(1H)-ones, Heterocycles 85 (2012) 697-704.
-
[23]
[11] Physical and spectral data 4a: Mp: 154-156℃; IR (KBr): ν 2208 cm-1 (CN); 1H NMR (400 MHz, CDCl3): δ 1.40 (d, 6H, J=6.9 Hz, CH(CH3)2), 2.66 (s, 3H, CH3), 2.76 (s, 3H, CH3), 3.11-3.16 (m, 1H, CH(CH3)2), 7.18 (d, 1H, J=10.5 Hz), 7.40-7.48 (m, 8H), 7.53-7.56 (m, 3H), 7.90 (s, 1H), 8.29 (s, 1H). Anal. Calcd. for C32H27NO: C 87.04, H 6.16, N 3.17; found: C 87.15, H 6.23, N 3.26. 4b: Mp: 165-167℃; IR (KBr): ν 2213 cm-1 (CN); 1H NMR (400 MHz, CDCl3): δ 1.40 (d, 6H, J=6.9 Hz, CH(CH3)2), 2.40 (s, 3H, CH3), 2.66 (s, 3H, CH3), 2.75 (s, 3H, CH3), 3.10-3.15 (m, 1H, CH(CH3)2), 7.21 (d, 1H, J=10.5 Hz), 7.35-7.48 (m, 7H), 7.50-7.58 (m, 3H), 7.90 (s, 1H), 8.25 (s, 1H). Anal. Calcd. for C33H29NO: C 87.00, H 6.42, N 3.07; found: C 87.16, H 6.51, N 3.14. 4c: Mp: 189-191℃; IR (KBr): ν 2208 cm-1 (CN); 1H NMR (400 MHz, CDCl3): δ 1.41 (d, 6H, J=6.9 Hz, CH(CH3)2), 2.67 (s, 3H, CH3), 2.75 (s, 3H, CH3), 3.11-3.17 (m, 1H, CH(CH3)2), 3.80 (s, 3H, OCH3), 6.81 (d, 2H, J=8.9 Hz), 7.18 (d, 1H, J=10.5 Hz), 7.40-7.48 (m, 5H), 7.51-7.57 (m, 3H), 7.93 (s, 1H), 8.27 (s, 1H). Anal. Calcd. for C33H29NO2: C 84.05, H 6.20, N 2.97; found: C 84.23, H 6.31, N 3.15. 4d: Mp: 171-173℃; IR (KBr): ν 2213 cm-1 (CN); 1H NMR (400 MHz, CDCl3): δ 1.40 (d, 6H, J=6.9 Hz, CH(CH3)2), 2.42 (s, 3H, CH3), 2.66 (s, 3H, CH3), 2.74 (s, 3H, CH3), 3.10-3.15 (m, 1H, CH(CH3)2), 3.79 (s, 3H, OCH3), 6.80 (d, 2H, J=8.7 Hz), 7.18 (d, 1H, J=10.5 Hz), 7.24-7.27 (m, 4H), 7.42-7.47 (m, 4H), 7.52 (d, 1H, J=10.5 Hz), 7.92 (s, 1H), 8.26 (s, 1H). Anal. Calcd. for C34H31NO2: C 84.09, H 6.43, N 2.88; found: C 84.17, H 6.59, N 3.04. 4e: Mp: 161-163℃; IR (KBr): ν 2216 cm-1 (CN); 1H NMR (400 MHz, CDCl3): δ 1.39 (d, 6H, J=6.9 Hz, CH(CH3)2), 2.66 (s, 3H, CH3), 2.74 (s, 3H, CH3), 3.08-3.17 (m, 1H, CH(CH3)2), 3.79 (s, 3H, OCH3), 3.87 (s, 3H, OCH3), 6.81 (d, 2H, J=8.7 Hz), 6.98 (d, 2H, J=8.7 Hz), 7.17 (d, 1H, J=10.8 Hz), 7.44-7.53 (5H, m), 7.92 (s, 1H), 8.27 (s, 1H). Anal. Calcd. for C34H31NO3: C 81.41, H 6.23, N 2.79; found: C 81.58, H 6.41, N 2.96. 4f: Mp: 153-155℃; IR (KBr): ν 2219 cm-1 (CN); 1H NMR (400 MHz, CDCl3): δ 1.38 (d, 6H, J=6.9 Hz, CH(CH3)2), 2.67 (s, 3H, CH3), 2.74 (s, 3H, CH3), 3.11-3.18 (m, 1H, CH(CH3)2), 3.81 (s, 3H, OCH3), 6.82 (d, 2H, J=9.0 Hz), 7.19 (d, 1H, J=10.8 Hz), 7.41-7.44 (m, 5H), 7.50 (d, 2H, J=8.7 Hz), 7.92 (s, 1H), 8.28 (s, 1H). Anal. Calcd. for C33H28ClNO2: C 78.33, H 5.58, N 2.77; found: C 78.47, H 5.73, N 2.89. 4g: Mp: 121-123℃; IR (KBr): ν 2215 cm-1 (CN); 1H NMR (400 MHz, CDCl3): δ 1.37 (d, 6H, J=6.8 Hz, CH(CH3)2), 2.48 (s, 3H, CH3), 2.61 (s, 3H, CH3), 2.85 (s, 3H, CH3), 3.12-3.17 (m, 1H, CH(CH3)2), 6.89 (d, 2H, J=8.0 Hz), 7.29-7.31 (m, 4H), 7.35 (d, 1H, J=10.8 Hz), 7.64 (d, 1H, J=10.8 Hz), 7.88 (s, 1H), 7.95 (d, 2H, J=8.4 Hz), 8.31 (s, 1H). Anal. Calcd. for C33H28N2O3: C 79.18, H 5.64, N 5.60; Found: C 79.34, H 5.79, N 5.81. 4h: Mp: 115-117℃; IR (KBr): ν 2219 cm-1 (CN); 1H NMR (400 MHz, CDCl3): δ 1.37 (d, 6H, J=6.8 Hz, CH(CH3)2), 2.62 (s, 3H, CH3), 2.83 (s, 3H, CH3), 3.11-3.15 (m, 1H, CH(CH3)2), 3.83 (s, 3H, OCH3), 6.91 (d, 2H, J=7.6 Hz), 7.01 (d, 2H, J=8.8 Hz), 7.34 (d, 1H, J=10.8 Hz), 7.30-7.32 (m, 2H), 7.62 (d, 1H, J=10.8 Hz), 7.88 (s, 1H), 8.03 (d, 2H, J=8.8 Hz), 8.30 (s, 1H). Anal. Calcd. for C33H28N2O4: C 76.73, H 5.46, N 5.42; found: C 76.86, H 5.63, N 5.57. 4i: Mp: 139-140℃; IR (KBr): ν 2225 cm-1 (CN); 1H NMR (400 MHz, CDCl3): δ 1.38 (d, 6H, J=6.3 Hz, CH(CH3)2), 2.67 (s, 3H, CH3), 2.71 (s, 3H, CH3), 3.12-3.16 (m, 1H, CH(CH3)2), 3.84 (s, 3H, OCH3), 6.53-6.55 (m, 1H), 6.82-6.83 (m, 1H), 6.91 (d, 2H, J=8.1 Hz), 7.17 (d, 1H, J=9.9 Hz), 7.51 (d, 1H, J=9.9 Hz), 7.53-7.54 (m, 1H), 7.62 (d, 2H, J=8.1 Hz), 7.90 (s, 1H), 8.26 (s, 1H). Anal. Calcd. for C31H27NO3: C 80.67, H 5.90, N 3.03; found: C 80.75, H 6.11, N 3.09. 4j: Mp: 154-156℃; IR (KBr): ν 2218 cm-1 (CN); 1H NMR (400 MHz, CDCl3): δ 1.35 (d, 6H, J=6.8 Hz, CH(CH3)2), 1.53 (s, 3H, CH3), 2.62 (s, 3H, CH3), 2.86 (s, 3H, CH3), 3.13-3.16 (m, 1H, CH(CH3)2), 7.37-7.40 (m, 2H), 7.63-7.65 (m, 5H), 7.89 (s, 1H), 8.32 (s, 1H). Anal. Calcd. for C27H25NO: C 85.45, H 6.64, N 3.69; found: C 85.57, H 6.80, N 3.73. 4k: Mp: 169-171℃; IR (KBr): ν 2215 cm-1 (CN); 1H NMR (400 MHz, CDCl3): δ 1.37 (d, 6H, J=6.8 Hz, CH(CH3)2), 1.54 (s, 3H, CH3), 2.48 (s, 3H, CH3), 2.62 (s, 3H, CH3), 2.86 (s, 3H, CH3), 3.12-3.17 (m, 1H, CH(CH3)2), 7.19 (d, 1H, J=10.8 Hz), 7.20-7.25 (m, 4H), 7.53 (d, 1H, J=10.8 Hz), 7.85 (s, 1H), 8.24 (s, 1H). Anal. Calcd. for C28H27NO: C 85.46, H 6.92, N 3.56; found: C 85.63, H 7.11, N 3.74. 4l: Mp: 135-137℃; IR (KBr): ν 2212 cm-1 (CN); 1H NMR (400 MHz, CDCl3): δ 1.05 (t, 3H, J=7.6 Hz, CH2CH3), 1.38 (d, 6H, J=6.8 Hz, CH(CH3)2), 1.41 (q, 2H, J=7.6 Hz, CH2CH3), 2.62 (3H, s, CH3), 2.85 (3H, s, CH3), 3.12-3.18 (m, 1H, CH(CH3)2), 3.82 (s, 3H, OCH3), 7.19 (d, 1H, J=9.2 Hz), 7.19-7.22 (m, 4H), 7.52 (d, 1H, J=9.2 Hz), 7.85 (s, 1H), 8.24 (s, 1H). Anal. Calcd. for C29H29NO2: C 82.24, H 6.90, N 3.31; found: C 82.38, H 7.03, N 3.47.
-
[1]
-
-
[1]
Yu Mao , Yilin Liu , Xiaochen Wang , Shengyang Ni , Yi Pan , Yi Wang . Acylfluorination of enynes via phosphine and silver catalysis. Chinese Chemical Letters, 2024, 35(8): 109443-. doi: 10.1016/j.cclet.2023.109443
-
[2]
Kuan Deng , Fei Yang , Zhi-Qi Cheng , Bi-Wen Ren , Hua Liu , Jiao Chen , Meng-Yao She , Le Yu , Xiao-Gang Liu , Hai-Tao Feng , Jian-Li Li . Construction of wavelength-tunable DSE quinoline salt derivatives by regulating the hybridization form of the nitrogen atom and intramolecular torsion angle. Chinese Chemical Letters, 2024, 35(10): 109464-. doi: 10.1016/j.cclet.2023.109464
-
[3]
Rui Wang , Yang Liang , Julius Rebek Jr. , Yang Yu . Stabilization and detection of labile reaction intermediates in supramolecular containers. Chinese Chemical Letters, 2024, 35(6): 109228-. doi: 10.1016/j.cclet.2023.109228
-
[4]
Xin Li , Zhen Xu , Donglei Bu , Jinming Cai , Huamei Chen , Qi Chen , Ting Chen , Fang Cheng , Lifeng Chi , Wenjie Dong , Zhenchao Dong , Shixuan Du , Qitang Fan , Xing Fan , Qiang Fu , Song Gao , Jing Guo , Weijun Guo , Yang He , Shimin Hou , Ying Jiang , Huihui Kong , Baojun Li , Dengyuan Li , Jie Li , Qing Li , Ruoning Li , Shuying Li , Yuxuan Lin , Mengxi Liu , Peinian Liu , Yanyan Liu , Jingtao Lü , Chuanxu Ma , Haoyang Pan , JinLiang Pan , Minghu Pan , Xiaohui Qiu , Ziyong Shen , Shijing Tan , Bing Wang , Dong Wang , Li Wang , Lili Wang , Tao Wang , Xiang Wang , Xingyue Wang , Xueyan Wang , Yansong Wang , Yu Wang , Kai Wu , Wei Xu , Na Xue , Linghao Yan , Fan Yang , Zhiyong Yang , Chi Zhang , Xue Zhang , Yang Zhang , Yao Zhang , Xiong Zhou , Junfa Zhu , Yajie Zhang , Feixue Gao , Yongfeng Wang . Recent progress on surface chemistry Ⅰ: Assembly and reaction. Chinese Chemical Letters, 2024, 35(12): 110055-. doi: 10.1016/j.cclet.2024.110055
-
[5]
Yi Zhang , Biao Wang , Chao Hu , Muhammad Humayun , Yaping Huang , Yulin Cao , Mosaad Negem , Yigang Ding , Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243
-
[6]
Xianxu Chu , Lu Wang , Junru Li , Hui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105
-
[7]
Kebo Xie , Qian Zhang , Fei Ye , Jungui Dai . A multi-enzymatic cascade reaction for the synthesis of bioactive C-oligosaccharides. Chinese Chemical Letters, 2024, 35(6): 109028-. doi: 10.1016/j.cclet.2023.109028
-
[8]
Zhao Li , Huimin Yang , Wenjing Cheng , Lin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237
-
[9]
Kunsong Hu , Yulong Zhang , Jiayi Zhu , Jinhua Mai , Gang Liu , Manoj Krishna Sugumar , Xinhua Liu , Feng Zhan , Rui Tan . Nano-engineered catalysts for high-performance oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(10): 109423-. doi: 10.1016/j.cclet.2023.109423
-
[10]
Zhuwen Wei , Jiayan Chen , Congzhen Xie , Yang Chen , Shifa Zhu . Divergent de novo construction of α-functionalized pyrrole derivatives via coarctate reaction. Chinese Chemical Letters, 2024, 35(12): 109677-. doi: 10.1016/j.cclet.2024.109677
-
[11]
Guoliang Gao , Guangzhen Zhao , Guang Zhu , Bowen Sun , Zixu Sun , Shunli Li , Ya-Qian Lan . Recent advancements in noble-metal electrocatalysts for alkaline hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(1): 109557-. doi: 10.1016/j.cclet.2024.109557
-
[12]
Xuhui Fan , Fan Wang , Mengjiao Li , Faiza Meharban , Yaying Li , Yuanyuan Cui , Xiaopeng Li , Jingsan Xu , Qi Xiao , Wei Luo . Visible light excitation on CuPd/TiN with enhanced chemisorption for catalyzing Heck reaction. Chinese Chemical Letters, 2025, 36(1): 110299-. doi: 10.1016/j.cclet.2024.110299
-
[13]
Jialin Cai , Yizhe Chen , Ruiwen Zhang , Cheng Yuan , Zeyu Jin , Yongting Chen , Shiming Zhang , Jiujun Zhang . Interfacial Pt-N coordination for promoting oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(2): 110255-. doi: 10.1016/j.cclet.2024.110255
-
[14]
Xiao Li , Wanqiang Yu , Yujie Wang , Ruiying Liu , Qingquan Yu , Riming Hu , Xuchuan Jiang , Qingsheng Gao , Hong Liu , Jiayuan Yu , Weijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166
-
[15]
Jing Cao , Dezheng Zhang , Bianqing Ren , Ping Song , Weilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863
-
[16]
Zizhuo Liang , Fuming Du , Ning Zhao , Xiangxin Guo . Revealing the reason for the unsuccessful fabrication of Li3Zr2Si2PO12 by solid state reaction. Chinese Journal of Structural Chemistry, 2023, 42(11): 100108-100108. doi: 10.1016/j.cjsc.2023.100108
-
[17]
Guan-Nan Xing , Di-Ye Wei , Hua Zhang , Zhong-Qun Tian , Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021
-
[18]
Chaozheng He , Jia Wang , Ling Fu , Wei Wei . Nitric oxide assists nitrogen reduction reaction on 2D MBene: A theoretical study. Chinese Chemical Letters, 2024, 35(5): 109037-. doi: 10.1016/j.cclet.2023.109037
-
[19]
Zhen Liu , Zhi-Yuan Ren , Chen Yang , Xiangyi Shao , Li Chen , Xin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939
-
[20]
Xiaoxia WANG , Ya'nan GUO , Feng SU , Chun HAN , Long SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(625)
- HTML views(0)