Citation: Dao-Lin Wang, Zhe Dong, Jiao Xu, Di Li. An efficient synthesis of 2-(guaiazulen-1-yl)furan derivatives via intramolecular Wittig reactions[J]. Chinese Chemical Letters, ;2013, 24(07): 622-624. shu

An efficient synthesis of 2-(guaiazulen-1-yl)furan derivatives via intramolecular Wittig reactions

  • Corresponding author: Dao-Lin Wang,  Jiao Xu, 
  • Received Date: 24 January 2013
    Available Online: 9 April 2013

  • An efficient and mild synthesis of 2-(guaiazulen-1-yl)furans, starting from easily accessible 1-(3-aryl-2-cyanopropenoyl)guaiazulenes, tributylphosphine and acyl chlorides, is described. The strategy employs the intramolecular Wittig protocol as a key step to append the crucial furan ring, leading to the highly functional furans in good yields.
  • 加载中
    1. [1]

      [1] A.R. Katrizky, C.W. Rees, E.F.V. Scriven, R.J.K. Taylor (Eds.), Comprehensive Heterocyclic Chemistry Ⅲ, 3, Pergamon Press, New York, 2008, p. 389.

    2. [2]

      [2] (a) M.T. Goldani, R. Sandaroos, S. Damavandi, One-pot synthesis of acenaphtho[l, 2-b]furan derivatives, Chin. Chem. Lett. 23 (2012) 169-172;

    3. [3]

      (b) E.K. Ahmed, M.A. Ameen, Synthesis of thiopyrano[4',3':4',5'] pyrido[3',2':4,5]furo[3,2-d]pyrimidines, Chin. Chem. Lett. 21 (2010) 669-673;

    4. [4]

      (c) H.K. Lee, K.F. Chan, C.W. Hui, et al., Use of furans in synthesis of bioactive compounds, Pure Appl. Chem. 77 (2005) 139-144;

    5. [5]

      (d) B.A. Keay, Synthesis ofmulti-substituted furan rings: the role of silicon, Chem. Soc. Rev. 28 (1999) 209-215;

    6. [6]

      (e) X.L.Hou,H.Y.Cheung, T.Y.Hon, et al.,Regioselective syntheses of substituted furans, Tetrahedron 54 (1998) 1955-2020.

    7. [7]

      [3] B.M. Heron, Heterocycles from intramolecular wittig, horner and wadsworthemmons reactions, Heterocycles 41 (1995) 2357-2386.

    8. [8]

      [4] (a) K.W. Chen, S. Syu, Y.J. Jang, et al., A facile approach to highly functional trisubstituted furans via intramolecular wittig reactions, Org. Biomol. Chem. 9 (2011) 2098-2106;

    9. [9]

      (b) T.T. Kao, S. Syu, W. Lin, Preparation of tetrasubstituted furans via intramolecular wittig reactions with phosphorus ylides as intermediates, Org. Lett. 12 (2010) 3066-3069;

    10. [10]

      (c) C.J. Lee, Y.J. Jang, Z.Z. Wu, et al., Preparation of functional phosphorus zwitterions from activated alkanes, aldehydes, and tributylphosphine: synthesis of polysubstituted furo[3,2-c]coumarins, Org. Lett. 14 (2012) 1906-1909.

    11. [11]

      [5] H. Yamazaki, S. Irono, A. Uchida, et al., Pharmacology of guaiazulene, with special reference to anti-inflammatory effect due to histamine-release inhibition, Nippon Yakurigaku Zasshi 54 (1958) 362-377.

    12. [12]

      [6] T. Yanagisawa, S. Wakabayashi, T. Tomiyama, et al., Synthesis and anti-ulcer activities of sodiumalkylazulene sulfonates, Chem. Pharm. Bull. 36 (1988) 641-647.

    13. [13]

      [7] (a) A.E. Asato, A. Peng, M.Z. Hossain, et al., Azulenic retinoids: novel nonbenzenoid aromatic retinoids with anticancer activity, J. Med. Chem. 36 (1993) 3137-3147;

    14. [14]

      (b) B.C. Hong, F.Y. Jiang, E.S. Kumar, Microwave-assisted [6+4]-cycloaddition of fulvenes anda-pyrones to azulene-indoles: facile syntheses of novel antineoplastic agents, Bioorg. Med. Chem. Lett. 11 (2001) 1981-1984.

    15. [15]

      [8] D.A. Becker, J.J. Ley, L. Echegoyen, et al., Stilbazulenyl nitrone (STAZN): a nitronylsubstituted hydrocarbon with the potency of classical phenolic chain-breaking antioxidants, J. Am. Chem. Soc. 124 (2002) 4678-4684.

    16. [16]

      [9] (a) T. Morita, T. Nakadate, K. Takase, A facile method for the synthesis of azuleno[2,1-b]furan and azuleno[2,1-b]pyrrole derivatives and their some properties, Heterocycles 15 (1981) 835-838;

    17. [17]

      (b) K. Fujimori, T. Fujita, K. Yamane, et al., Synthesis of azuleno[1,2-b]-and azuleno[1,2-c]thiophenes by the reactions of 2H-cyclohepta[b]furan-2-ones with enamines of 3-oxotetrahydrothiophenes, Chem. Lett. 12 (1983) 1721-1724;

    18. [18]

      (c) K. Fujimori, H. Fukazawa, Y. Nezu, et al., Synthesis of azuleno[1,2-b]pyrrole and azuleno[1,2-b]furan, Chem. Lett. 15 (1986) 1021-1024.

    19. [19]

      [10] (a) D.L. Wang, S.F. Li, W. Li, et al., An efficient synthesis of 3-(guaiazulene-1-yl)succinimides by addition of guaiazulene to maleimides, Chin. Chem. Lett. 22 (2011) 789-792;

    20. [20]

      (b) D.L. Wang, J.Y. Yu, W. Li, et al., Synthesis of naphthylazuleno[2, 1-d]pyrimidin-4-amines, Chin. J. Org. Chem. 32 (2012) 1547-1551;

    21. [21]

      (c) D.L. Wang, D. Li, L. Cao, Synthesis of 1-(2-amino-3,5-dicyano-4-aryl-4Hpyran-6-yl)guaiazulenes, Chin. J. Org. Chem. 32 (2012) 1741-1745;

    22. [22]

      (d) D.L. Wang, Q.T. Cui, S.S. Feng, et al., A new synthesis approach to azuleno[2,1-b]pyridine-4(1H)-ones, Heterocycles 85 (2012) 697-704.

    23. [23]

      [11] Physical and spectral data 4a: Mp: 154-156℃; IR (KBr): ν 2208 cm-1 (CN); 1H NMR (400 MHz, CDCl3): δ 1.40 (d, 6H, J=6.9 Hz, CH(CH3)2), 2.66 (s, 3H, CH3), 2.76 (s, 3H, CH3), 3.11-3.16 (m, 1H, CH(CH3)2), 7.18 (d, 1H, J=10.5 Hz), 7.40-7.48 (m, 8H), 7.53-7.56 (m, 3H), 7.90 (s, 1H), 8.29 (s, 1H). Anal. Calcd. for C32H27NO: C 87.04, H 6.16, N 3.17; found: C 87.15, H 6.23, N 3.26. 4b: Mp: 165-167℃; IR (KBr): ν 2213 cm-1 (CN); 1H NMR (400 MHz, CDCl3): δ 1.40 (d, 6H, J=6.9 Hz, CH(CH3)2), 2.40 (s, 3H, CH3), 2.66 (s, 3H, CH3), 2.75 (s, 3H, CH3), 3.10-3.15 (m, 1H, CH(CH3)2), 7.21 (d, 1H, J=10.5 Hz), 7.35-7.48 (m, 7H), 7.50-7.58 (m, 3H), 7.90 (s, 1H), 8.25 (s, 1H). Anal. Calcd. for C33H29NO: C 87.00, H 6.42, N 3.07; found: C 87.16, H 6.51, N 3.14. 4c: Mp: 189-191℃; IR (KBr): ν 2208 cm-1 (CN); 1H NMR (400 MHz, CDCl3): δ 1.41 (d, 6H, J=6.9 Hz, CH(CH3)2), 2.67 (s, 3H, CH3), 2.75 (s, 3H, CH3), 3.11-3.17 (m, 1H, CH(CH3)2), 3.80 (s, 3H, OCH3), 6.81 (d, 2H, J=8.9 Hz), 7.18 (d, 1H, J=10.5 Hz), 7.40-7.48 (m, 5H), 7.51-7.57 (m, 3H), 7.93 (s, 1H), 8.27 (s, 1H). Anal. Calcd. for C33H29NO2: C 84.05, H 6.20, N 2.97; found: C 84.23, H 6.31, N 3.15. 4d: Mp: 171-173℃; IR (KBr): ν 2213 cm-1 (CN); 1H NMR (400 MHz, CDCl3): δ 1.40 (d, 6H, J=6.9 Hz, CH(CH3)2), 2.42 (s, 3H, CH3), 2.66 (s, 3H, CH3), 2.74 (s, 3H, CH3), 3.10-3.15 (m, 1H, CH(CH3)2), 3.79 (s, 3H, OCH3), 6.80 (d, 2H, J=8.7 Hz), 7.18 (d, 1H, J=10.5 Hz), 7.24-7.27 (m, 4H), 7.42-7.47 (m, 4H), 7.52 (d, 1H, J=10.5 Hz), 7.92 (s, 1H), 8.26 (s, 1H). Anal. Calcd. for C34H31NO2: C 84.09, H 6.43, N 2.88; found: C 84.17, H 6.59, N 3.04. 4e: Mp: 161-163℃; IR (KBr): ν 2216 cm-1 (CN); 1H NMR (400 MHz, CDCl3): δ 1.39 (d, 6H, J=6.9 Hz, CH(CH3)2), 2.66 (s, 3H, CH3), 2.74 (s, 3H, CH3), 3.08-3.17 (m, 1H, CH(CH3)2), 3.79 (s, 3H, OCH3), 3.87 (s, 3H, OCH3), 6.81 (d, 2H, J=8.7 Hz), 6.98 (d, 2H, J=8.7 Hz), 7.17 (d, 1H, J=10.8 Hz), 7.44-7.53 (5H, m), 7.92 (s, 1H), 8.27 (s, 1H). Anal. Calcd. for C34H31NO3: C 81.41, H 6.23, N 2.79; found: C 81.58, H 6.41, N 2.96. 4f: Mp: 153-155℃; IR (KBr): ν 2219 cm-1 (CN); 1H NMR (400 MHz, CDCl3): δ 1.38 (d, 6H, J=6.9 Hz, CH(CH3)2), 2.67 (s, 3H, CH3), 2.74 (s, 3H, CH3), 3.11-3.18 (m, 1H, CH(CH3)2), 3.81 (s, 3H, OCH3), 6.82 (d, 2H, J=9.0 Hz), 7.19 (d, 1H, J=10.8 Hz), 7.41-7.44 (m, 5H), 7.50 (d, 2H, J=8.7 Hz), 7.92 (s, 1H), 8.28 (s, 1H). Anal. Calcd. for C33H28ClNO2: C 78.33, H 5.58, N 2.77; found: C 78.47, H 5.73, N 2.89. 4g: Mp: 121-123℃; IR (KBr): ν 2215 cm-1 (CN); 1H NMR (400 MHz, CDCl3): δ 1.37 (d, 6H, J=6.8 Hz, CH(CH3)2), 2.48 (s, 3H, CH3), 2.61 (s, 3H, CH3), 2.85 (s, 3H, CH3), 3.12-3.17 (m, 1H, CH(CH3)2), 6.89 (d, 2H, J=8.0 Hz), 7.29-7.31 (m, 4H), 7.35 (d, 1H, J=10.8 Hz), 7.64 (d, 1H, J=10.8 Hz), 7.88 (s, 1H), 7.95 (d, 2H, J=8.4 Hz), 8.31 (s, 1H). Anal. Calcd. for C33H28N2O3: C 79.18, H 5.64, N 5.60; Found: C 79.34, H 5.79, N 5.81. 4h: Mp: 115-117℃; IR (KBr): ν 2219 cm-1 (CN); 1H NMR (400 MHz, CDCl3): δ 1.37 (d, 6H, J=6.8 Hz, CH(CH3)2), 2.62 (s, 3H, CH3), 2.83 (s, 3H, CH3), 3.11-3.15 (m, 1H, CH(CH3)2), 3.83 (s, 3H, OCH3), 6.91 (d, 2H, J=7.6 Hz), 7.01 (d, 2H, J=8.8 Hz), 7.34 (d, 1H, J=10.8 Hz), 7.30-7.32 (m, 2H), 7.62 (d, 1H, J=10.8 Hz), 7.88 (s, 1H), 8.03 (d, 2H, J=8.8 Hz), 8.30 (s, 1H). Anal. Calcd. for C33H28N2O4: C 76.73, H 5.46, N 5.42; found: C 76.86, H 5.63, N 5.57. 4i: Mp: 139-140℃; IR (KBr): ν 2225 cm-1 (CN); 1H NMR (400 MHz, CDCl3): δ 1.38 (d, 6H, J=6.3 Hz, CH(CH3)2), 2.67 (s, 3H, CH3), 2.71 (s, 3H, CH3), 3.12-3.16 (m, 1H, CH(CH3)2), 3.84 (s, 3H, OCH3), 6.53-6.55 (m, 1H), 6.82-6.83 (m, 1H), 6.91 (d, 2H, J=8.1 Hz), 7.17 (d, 1H, J=9.9 Hz), 7.51 (d, 1H, J=9.9 Hz), 7.53-7.54 (m, 1H), 7.62 (d, 2H, J=8.1 Hz), 7.90 (s, 1H), 8.26 (s, 1H). Anal. Calcd. for C31H27NO3: C 80.67, H 5.90, N 3.03; found: C 80.75, H 6.11, N 3.09. 4j: Mp: 154-156℃; IR (KBr): ν 2218 cm-1 (CN); 1H NMR (400 MHz, CDCl3): δ 1.35 (d, 6H, J=6.8 Hz, CH(CH3)2), 1.53 (s, 3H, CH3), 2.62 (s, 3H, CH3), 2.86 (s, 3H, CH3), 3.13-3.16 (m, 1H, CH(CH3)2), 7.37-7.40 (m, 2H), 7.63-7.65 (m, 5H), 7.89 (s, 1H), 8.32 (s, 1H). Anal. Calcd. for C27H25NO: C 85.45, H 6.64, N 3.69; found: C 85.57, H 6.80, N 3.73. 4k: Mp: 169-171℃; IR (KBr): ν 2215 cm-1 (CN); 1H NMR (400 MHz, CDCl3): δ 1.37 (d, 6H, J=6.8 Hz, CH(CH3)2), 1.54 (s, 3H, CH3), 2.48 (s, 3H, CH3), 2.62 (s, 3H, CH3), 2.86 (s, 3H, CH3), 3.12-3.17 (m, 1H, CH(CH3)2), 7.19 (d, 1H, J=10.8 Hz), 7.20-7.25 (m, 4H), 7.53 (d, 1H, J=10.8 Hz), 7.85 (s, 1H), 8.24 (s, 1H). Anal. Calcd. for C28H27NO: C 85.46, H 6.92, N 3.56; found: C 85.63, H 7.11, N 3.74. 4l: Mp: 135-137℃; IR (KBr): ν 2212 cm-1 (CN); 1H NMR (400 MHz, CDCl3): δ 1.05 (t, 3H, J=7.6 Hz, CH2CH3), 1.38 (d, 6H, J=6.8 Hz, CH(CH3)2), 1.41 (q, 2H, J=7.6 Hz, CH2CH3), 2.62 (3H, s, CH3), 2.85 (3H, s, CH3), 3.12-3.18 (m, 1H, CH(CH3)2), 3.82 (s, 3H, OCH3), 7.19 (d, 1H, J=9.2 Hz), 7.19-7.22 (m, 4H), 7.52 (d, 1H, J=9.2 Hz), 7.85 (s, 1H), 8.24 (s, 1H). Anal. Calcd. for C29H29NO2: C 82.24, H 6.90, N 3.31; found: C 82.38, H 7.03, N 3.47.

  • 加载中
    1. [1]

      Yu MaoYilin LiuXiaochen WangShengyang NiYi PanYi Wang . Acylfluorination of enynes via phosphine and silver catalysis. Chinese Chemical Letters, 2024, 35(8): 109443-. doi: 10.1016/j.cclet.2023.109443

    2. [2]

      Kuan DengFei YangZhi-Qi ChengBi-Wen RenHua LiuJiao ChenMeng-Yao SheLe YuXiao-Gang LiuHai-Tao FengJian-Li Li . Construction of wavelength-tunable DSE quinoline salt derivatives by regulating the hybridization form of the nitrogen atom and intramolecular torsion angle. Chinese Chemical Letters, 2024, 35(10): 109464-. doi: 10.1016/j.cclet.2023.109464

    3. [3]

      Rui WangYang LiangJulius Rebek Jr.Yang Yu . Stabilization and detection of labile reaction intermediates in supramolecular containers. Chinese Chemical Letters, 2024, 35(6): 109228-. doi: 10.1016/j.cclet.2023.109228

    4. [4]

      Xin LiZhen XuDonglei BuJinming CaiHuamei ChenQi ChenTing ChenFang ChengLifeng ChiWenjie DongZhenchao DongShixuan DuQitang FanXing FanQiang FuSong GaoJing GuoWeijun GuoYang HeShimin HouYing JiangHuihui KongBaojun LiDengyuan LiJie LiQing LiRuoning LiShuying LiYuxuan LinMengxi LiuPeinian LiuYanyan LiuJingtao LüChuanxu MaHaoyang PanJinLiang PanMinghu PanXiaohui QiuZiyong ShenShijing TanBing WangDong WangLi WangLili WangTao WangXiang WangXingyue WangXueyan WangYansong WangYu WangKai WuWei XuNa XueLinghao YanFan YangZhiyong YangChi ZhangXue ZhangYang ZhangYao ZhangXiong ZhouJunfa ZhuYajie ZhangFeixue GaoYongfeng Wang . Recent progress on surface chemistry Ⅰ: Assembly and reaction. Chinese Chemical Letters, 2024, 35(12): 110055-. doi: 10.1016/j.cclet.2024.110055

    5. [5]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    6. [6]

      Xianxu ChuLu WangJunru LiHui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105

    7. [7]

      Kebo XieQian ZhangFei YeJungui Dai . A multi-enzymatic cascade reaction for the synthesis of bioactive C-oligosaccharides. Chinese Chemical Letters, 2024, 35(6): 109028-. doi: 10.1016/j.cclet.2023.109028

    8. [8]

      Zhao LiHuimin YangWenjing ChengLin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237

    9. [9]

      Kunsong HuYulong ZhangJiayi ZhuJinhua MaiGang LiuManoj Krishna SugumarXinhua LiuFeng ZhanRui Tan . Nano-engineered catalysts for high-performance oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(10): 109423-. doi: 10.1016/j.cclet.2023.109423

    10. [10]

      Zhuwen WeiJiayan ChenCongzhen XieYang ChenShifa Zhu . Divergent de novo construction of α-functionalized pyrrole derivatives via coarctate reaction. Chinese Chemical Letters, 2024, 35(12): 109677-. doi: 10.1016/j.cclet.2024.109677

    11. [11]

      Guoliang GaoGuangzhen ZhaoGuang ZhuBowen SunZixu SunShunli LiYa-Qian Lan . Recent advancements in noble-metal electrocatalysts for alkaline hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(1): 109557-. doi: 10.1016/j.cclet.2024.109557

    12. [12]

      Xuhui FanFan WangMengjiao LiFaiza MeharbanYaying LiYuanyuan CuiXiaopeng LiJingsan XuQi XiaoWei Luo . Visible light excitation on CuPd/TiN with enhanced chemisorption for catalyzing Heck reaction. Chinese Chemical Letters, 2025, 36(1): 110299-. doi: 10.1016/j.cclet.2024.110299

    13. [13]

      Jialin CaiYizhe ChenRuiwen ZhangCheng YuanZeyu JinYongting ChenShiming ZhangJiujun Zhang . Interfacial Pt-N coordination for promoting oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(2): 110255-. doi: 10.1016/j.cclet.2024.110255

    14. [14]

      Xiao LiWanqiang YuYujie WangRuiying LiuQingquan YuRiming HuXuchuan JiangQingsheng GaoHong LiuJiayuan YuWeijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166

    15. [15]

      Jing CaoDezheng ZhangBianqing RenPing SongWeilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863

    16. [16]

      Zizhuo Liang Fuming Du Ning Zhao Xiangxin Guo . Revealing the reason for the unsuccessful fabrication of Li3Zr2Si2PO12 by solid state reaction. Chinese Journal of Structural Chemistry, 2023, 42(11): 100108-100108. doi: 10.1016/j.cjsc.2023.100108

    17. [17]

      Guan-Nan Xing Di-Ye Wei Hua Zhang Zhong-Qun Tian Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021

    18. [18]

      Chaozheng HeJia WangLing FuWei Wei . Nitric oxide assists nitrogen reduction reaction on 2D MBene: A theoretical study. Chinese Chemical Letters, 2024, 35(5): 109037-. doi: 10.1016/j.cclet.2023.109037

    19. [19]

      Zhen LiuZhi-Yuan RenChen YangXiangyi ShaoLi ChenXin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939

    20. [20]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

Metrics
  • PDF Downloads(0)
  • Abstract views(626)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return