Citation: Yi Chen Chan, Abdussalam Salhin Mohamed Ali, Melati Khairuddean, Kooi Yeong Khaw, Vikneswaran Murugaiyah, Alireza Basiri. Synthesis and molecular modeling study of Cu(Ⅱ) complexes derived from 2-(diphenylmethylene)hydrazinecarbothioamide derivatives with cholinesterase inhibitory activities[J]. Chinese Chemical Letters, ;2013, 24(07): 609-612.
-
Thiosemicarbazones of 2-amino-5-chlorobenzophenone and 3-aminobenzophenone (L1-L4) have been synthesized and their Cu(Ⅱ) complexes (1-4) were afforded via coordination with cupric chloride. All these compounds were characterized by UV-vis and IR spectroscopy together with CHN elemental analysis. NMR spectroscopy was also applied to characterize the ligands. In vitro cholinesterase inhibitory assays for the complexes (1-4) showed IC50 values less than 10 μmol/L, with complex 1 exhibiting the most activity, IC50=2.15 μmol/L and 2.16 μmol/L for AChE and BuChE, respectively. Molecular modeling simulation revealed the binding interaction template for complex 1 with the AChE and BuChE receptors. In DPPH assay, the complexes also showed more in vitro antioxidant activities in comparison to their parent ligands.
-
Keywords:
- Thiosemicarbazone,
- Cu(Ⅱ) complex,
- Cholinesterase,
- Molecular modeling
-
-
[1]
[1] G. Small, R. Bullock, Defining optimal treatment with cholinesterase inhibitors in Alzheimer's disease, Alzheimers Dement. 7 (2011) 177-184.
-
[2]
[2] M.A. Kamal, P. Klein, Q.S. Yu, et al., Kinetics of human serum butyrylcholinesterase and its inhibition by a novel experimental Alzheimer therapeutic, bisnorcymserine, J. Alzheimers Dis. 10 (2006) 43-51.
-
[3]
[3] H.J. Han, J.J. Lee, S.A. Park, et al., Efficacy and safety of switching from oral cholinesterase inhibitors to the rivastigmine transdermal patch in patients with probable Alzheimer's disease, J. Clin. Neurol. 7 (2011) 137-142.
-
[4]
[4] A. Adsersen, A. Kjølbye, O. Dall, et al., Acetylcholinesterase and butyrylcholinesterase inhibitory compounds from Corydalis cava schweigg. & kort, J. Ethnopharmacol. 113 (2007) 179-182.
-
[5]
[5] N.H. Greig, D.K. Lahiri, K. Sambamurti, Butyrylcholinesterase: an important new target in Alzheimer's disease therapy, Int. Psychogeriatr. 14 (2002) 77-91.
-
[6]
[6] A. Fallarero, P. Oinonen, S. Gupta, et al., Inhibition of acetylcholinesterase by coumarins: the case of coumarin 106, Pharmacol. Res. 58 (2008) 215-221.
-
[7]
[7] Z. Yang, X. Zhang, D. Duan, et al., Modified TLC bioautographic method for screening acetylcholinesterase inhibitors from plant extracts, J. Sep. Sci. 32 (2009) 3257-3259.
-
[8]
[8] P.K. Mukherjee, V. Kumar, M. Mal, et al., Acetylcholinesterase inhibitors from plants, Phytomedicine 14 (2007) 289-300.
-
[9]
[9] A. Budimir, N. Humbert, M. Elhabiri, et al., Hydroxyquinoline based binders: promising ligands for chelatotherapy? J. Inorg. Biochem. 105 (2011) 490-496.
-
[10]
[10] D.J. Bonda, G. Liu, P. Men, et al., Nanoparticle delivery of transition-metal chelators to the brain: oxidative stress will never see it coming, CNS Neurol. Disord. Drug Targets 11 (2012) 81-85.
-
[11]
[11] M. Ikram, R. Saeed Ur, S. Rehman, et al., Synthesis, characterization and distinct butyrylcholinesterase activities of transition metal complexes of 2-[(E)-(quinolin-3-ylimino)methyl]phenol, Inorg. Chim. Acta 390 (2012) 210-216.
-
[12]
[12] M.C. Rodriguez-Argüelles, M.B. Ferrari, G.G. Fava, et al., Acenaphthenequinone thiosemicarbazone and its transition metal complexes: synthesis, structure, and biological activity, J. Inorg. Biochem. 66 (1997) 7-17.
-
[13]
[13] S. Sharma, F. Athar, M.R. Maurya, et al., Novel bidentate complexes of Cu(Ⅱ) derived from 5-nitrofuran-2-carboxaldehyde thiosemicarbazones with antiamoebic activity against E. histolytica, Eur. J. Med. Chem. 40 (2005) 557-562.
-
[14]
[14] G. Vatsa, O.P. Pandey, S.K. Sengupta, Synthesis, spectroscopic and toxicity studies of titanocene chelates of isatin-3-thiosemicarbazones, Bioinorg. Chem. Appl. 3 (2005) 151-160.
-
[15]
[15] The characteristic data for representative compounds L1: pale yellow solid, 78% yield, mp: 200-202℃. Anal. Calcd. for C14H13ClN4S(%): C, 55.17; H, 4.27; N, 18.39. Found: C, 55.13; H, 4.18; N, 18.45. IR (KBr, cm-1): ν (NH2)aromatic 1622, ν (C=N) 1591, ν (C=S) 818. UV-vis (DMF, nm): 267, 319. 1H NMR (500 MHz, DMSO-d6): δ 5.29 (s, 2H, Ar-NH2), 6.91 (d, 1H, J=9.0 Hz, Ar-H), 6.92 (d, 1H, J=2.5 Hz, Ar-H), 7.27-7.30 (dd, 1H, J=2.5, 9.0 Hz, Ar-H), 7.36-7.41 (m, 3H, Ar-H), 7.70-7.71 (m, 2H, Ar-H), 8.28 (s, 1H, CSNH2), 8.61 (s, 1H, CSNH2), 8.61 (s, 1H, NH). 13C NMR (125 MHz, DMSO-d6): δ 119.68 (C-Cl), 144.62 (C-NH2), 146.43 (C=N), 178.07 (C=S). Complex 1: army green, 60% yield, mp: 186-187℃. Anal. Calcd. for[Cu(L1)Cl]Cl·H2O (%): C, 36.76; H, 3.28; N, 12.25. Found: C, 36.84; H, 3.22; N, 12.18. IR (KBr, cm-1): ν (NH2)aromatic 1635, (C=N) 1580, ν (C=S) 801. UV-vis (DMF, nm): 272, 293, 364, 433, 622. m/z (ESI MS): 367.8 (M+-2Cl-H2O, 62%). μeff: 1.78 B.M.
-
[16]
[16] G.L. Ellman, D. Courtney, V.J. Andres, et al., A new and rapid colorimetric determination of acetylcholinesterase activity, BioChem. Pharmacol. 7 (1961) 88-95.
-
[17]
[17] A. Zawadzka, I. Łozińska, Z. Molęda, et al., Highly selective inhibition of butyrylcholinesterase by a novel melatonin-tacrine heterodimers, J. Pineal Res. (2012).
-
[18]
[18] S.M. Salga, H.M. Ali, M.A. Abdullah, et al., Synthesis, characterization, acetylcholinesterase inhibition, molecular modeling and antioxidant activities of some novel Schiff bases derived from 1-(2-ketoiminoethyl)piperazines, Molecules 16 (2011) 9316-9330.
-
[1]
-
-
[1]
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
-
[2]
Wenjuan Jin , Zelong Chen , Yi Wang , Jiaxuan Li , Jiahui Li , Yuxin Pei , Zhichao Pei . Nano metal-photosensitizer based on Aza-BODIPY-Cu complex for CDT-enhanced dual phototherapy. Chinese Chemical Letters, 2024, 35(7): 109328-. doi: 10.1016/j.cclet.2023.109328
-
[3]
Kexin Yuan , Yulei Liu , Haoran Feng , Yi Liu , Jun Cheng , Beiyang Luo , Qinglian Wu , Xinyu Zhang , Ying Wang , Xian Bao , Wanqian Guo , Jun Ma . Unlocking the potential of thin-film composite reverse osmosis membrane performance: Insights from mass transfer modeling. Chinese Chemical Letters, 2024, 35(5): 109022-. doi: 10.1016/j.cclet.2023.109022
-
[4]
Fang-Yuan Chen , Wen-Chao Geng , Kang Cai , Dong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161
-
[5]
Caihong Mao , Yanfeng He , Xiaohan Wang , Yan Cai , Xiaobo Hu . Synthesis and molecular recognition characteristics of a tetrapodal benzene cage. Chinese Chemical Letters, 2024, 35(8): 109362-. doi: 10.1016/j.cclet.2023.109362
-
[6]
Cheng-Da Zhao , Huan Yao , Shi-Yao Li , Fangfang Du , Li-Li Wang , Liu-Pan Yang . Amide naphthotubes: Biomimetic macrocycles for selective molecular recognition. Chinese Chemical Letters, 2024, 35(4): 108879-. doi: 10.1016/j.cclet.2023.108879
-
[7]
Chao Ma , Cong Lin , Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209
-
[8]
Mengjuan Sun , Muye Zhou , Yifang Xiao , Hailei Tang , Jinhua Chen , Ruitao Zhang , Chunjiayu Li , Qi Ya , Qian Chen , Jiasheng Tu , Qiyue Wang , Chunmeng Sun . Reversibly size-switchable polyion complex micelles for antiangiogenic cancer therapy. Chinese Chemical Letters, 2024, 35(7): 109110-. doi: 10.1016/j.cclet.2023.109110
-
[9]
Yuanjin Chen , Xianghui Shi , Dajiang Huang , Junnian Wei , Zhenfeng Xi . Synthesis and reactivity of cobalt dinitrogen complex supported by nonsymmetrical pincer ligand. Chinese Chemical Letters, 2024, 35(7): 109292-. doi: 10.1016/j.cclet.2023.109292
-
[10]
Peng Meng , Qian-Cheng Luo , Aidan Brock , Xiaodong Wang , Mahboobeh Shahbazi , Aaron Micallef , John McMurtrie , Dongchen Qi , Yan-Zhen Zheng , Jingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542
-
[11]
Jingwen Zhao , Jianpu Tang , Zhen Cui , Limin Liu , Dayong Yang , Chi Yao . A DNA micro-complex containing polyaptamer for exosome separation and wound healing. Chinese Chemical Letters, 2024, 35(9): 109303-. doi: 10.1016/j.cclet.2023.109303
-
[12]
Ya-Ping Liu , Zhi-Rong Gui , Zhen-Wen Zhang , Sai-Kang Wang , Wei Lang , Yanzhu Liu , Qian-Yong Cao . A phenylphenthiazide anchored Tb(Ⅲ)-cyclen complex for fluorescent turn-on sensing of ClO−. Chinese Chemical Letters, 2025, 36(2): 109769-. doi: 10.1016/j.cclet.2024.109769
-
[13]
Zhimin Sun , Xin-Hui Guo , Yue Zhao , Qing-Yu Meng , Li-Juan Xing , He-Lue Sun . Dynamically switchable porphyrin-based molecular tweezer for on−off fullerene recognition. Chinese Chemical Letters, 2024, 35(6): 109162-. doi: 10.1016/j.cclet.2023.109162
-
[14]
Li Lin , Song-Lin Tian , Zhen-Yu Hu , Yu Zhang , Li-Min Chang , Jia-Jun Wang , Wan-Qiang Liu , Qing-Shuang Wang , Fang Wang . Molecular crowding electrolytes for stabilizing Zn metal anode in rechargeable aqueous batteries. Chinese Chemical Letters, 2024, 35(7): 109802-. doi: 10.1016/j.cclet.2024.109802
-
[15]
Minghao Hu , Tianci Xie , Yuqiang Hu , Longjie Li , Ting Wang , Tongbo Wu . Allosteric DNAzyme-based encoder for molecular information transfer. Chinese Chemical Letters, 2024, 35(7): 109232-. doi: 10.1016/j.cclet.2023.109232
-
[16]
Chuan-Zhi Ni , Ruo-Ming Li , Fang-Qi Zhang , Qu-Ao-Wei Li , Yuan-Yuan Zhu , Jie Zeng , Shuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862
-
[17]
Wei-Jia Wang , Kaihong Chen . Molecular-based porous polymers with precise sites for photoreduction of carbon dioxide. Chinese Chemical Letters, 2025, 36(1): 109998-. doi: 10.1016/j.cclet.2024.109998
-
[18]
Dongpu Wu , Zheng Yang , Yuchen Xia , Lulu Wu , Yingxia Zhou , Caoyuan Niu , Puhui Xie , Xin Zheng , Zhanqi Cao . Surface controllable wettability using amphiphilic rotaxane molecular shuttles. Chinese Chemical Letters, 2025, 36(2): 110353-. doi: 10.1016/j.cclet.2024.110353
-
[19]
Bingwei Wang , Yihong Ding , Xiao Tian . Benchmarking model chemistry composite calculations for vertical ionization potential of molecular systems. Chinese Chemical Letters, 2025, 36(2): 109721-. doi: 10.1016/j.cclet.2024.109721
-
[20]
Zhijia Zhang , Shihao Sun , Yuefang Chen , Yanhao Wei , Mengmeng Zhang , Chunsheng Li , Yan Sun , Shaofei Zhang , Yong Jiang . Epitaxial growth of Cu2-xSe on Cu (220) crystal plane as high property anode for sodium storage. Chinese Chemical Letters, 2024, 35(7): 108922-. doi: 10.1016/j.cclet.2023.108922
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(656)
- HTML views(19)