Citation: Yi Chen Chan, Abdussalam Salhin Mohamed Ali, Melati Khairuddean, Kooi Yeong Khaw, Vikneswaran Murugaiyah, Alireza Basiri. Synthesis and molecular modeling study of Cu(Ⅱ) complexes derived from 2-(diphenylmethylene)hydrazinecarbothioamide derivatives with cholinesterase inhibitory activities[J]. Chinese Chemical Letters, ;2013, 24(07): 609-612. shu

Synthesis and molecular modeling study of Cu(Ⅱ) complexes derived from 2-(diphenylmethylene)hydrazinecarbothioamide derivatives with cholinesterase inhibitory activities

  • Corresponding author: Abdussalam Salhin Mohamed Ali, 
  • Received Date: 29 January 2013
    Available Online: 1 April 2013

  • Thiosemicarbazones of 2-amino-5-chlorobenzophenone and 3-aminobenzophenone (L1-L4) have been synthesized and their Cu(Ⅱ) complexes (1-4) were afforded via coordination with cupric chloride. All these compounds were characterized by UV-vis and IR spectroscopy together with CHN elemental analysis. NMR spectroscopy was also applied to characterize the ligands. In vitro cholinesterase inhibitory assays for the complexes (1-4) showed IC50 values less than 10 μmol/L, with complex 1 exhibiting the most activity, IC50=2.15 μmol/L and 2.16 μmol/L for AChE and BuChE, respectively. Molecular modeling simulation revealed the binding interaction template for complex 1 with the AChE and BuChE receptors. In DPPH assay, the complexes also showed more in vitro antioxidant activities in comparison to their parent ligands.
  • 加载中
    1. [1]

      [1] G. Small, R. Bullock, Defining optimal treatment with cholinesterase inhibitors in Alzheimer's disease, Alzheimers Dement. 7 (2011) 177-184.

    2. [2]

      [2] M.A. Kamal, P. Klein, Q.S. Yu, et al., Kinetics of human serum butyrylcholinesterase and its inhibition by a novel experimental Alzheimer therapeutic, bisnorcymserine, J. Alzheimers Dis. 10 (2006) 43-51.

    3. [3]

      [3] H.J. Han, J.J. Lee, S.A. Park, et al., Efficacy and safety of switching from oral cholinesterase inhibitors to the rivastigmine transdermal patch in patients with probable Alzheimer's disease, J. Clin. Neurol. 7 (2011) 137-142.

    4. [4]

      [4] A. Adsersen, A. Kjølbye, O. Dall, et al., Acetylcholinesterase and butyrylcholinesterase inhibitory compounds from Corydalis cava schweigg. & kort, J. Ethnopharmacol. 113 (2007) 179-182.

    5. [5]

      [5] N.H. Greig, D.K. Lahiri, K. Sambamurti, Butyrylcholinesterase: an important new target in Alzheimer's disease therapy, Int. Psychogeriatr. 14 (2002) 77-91.

    6. [6]

      [6] A. Fallarero, P. Oinonen, S. Gupta, et al., Inhibition of acetylcholinesterase by coumarins: the case of coumarin 106, Pharmacol. Res. 58 (2008) 215-221.

    7. [7]

      [7] Z. Yang, X. Zhang, D. Duan, et al., Modified TLC bioautographic method for screening acetylcholinesterase inhibitors from plant extracts, J. Sep. Sci. 32 (2009) 3257-3259.

    8. [8]

      [8] P.K. Mukherjee, V. Kumar, M. Mal, et al., Acetylcholinesterase inhibitors from plants, Phytomedicine 14 (2007) 289-300.

    9. [9]

      [9] A. Budimir, N. Humbert, M. Elhabiri, et al., Hydroxyquinoline based binders: promising ligands for chelatotherapy? J. Inorg. Biochem. 105 (2011) 490-496.

    10. [10]

      [10] D.J. Bonda, G. Liu, P. Men, et al., Nanoparticle delivery of transition-metal chelators to the brain: oxidative stress will never see it coming, CNS Neurol. Disord. Drug Targets 11 (2012) 81-85.

    11. [11]

      [11] M. Ikram, R. Saeed Ur, S. Rehman, et al., Synthesis, characterization and distinct butyrylcholinesterase activities of transition metal complexes of 2-[(E)-(quinolin-3-ylimino)methyl]phenol, Inorg. Chim. Acta 390 (2012) 210-216.

    12. [12]

      [12] M.C. Rodriguez-Argüelles, M.B. Ferrari, G.G. Fava, et al., Acenaphthenequinone thiosemicarbazone and its transition metal complexes: synthesis, structure, and biological activity, J. Inorg. Biochem. 66 (1997) 7-17.

    13. [13]

      [13] S. Sharma, F. Athar, M.R. Maurya, et al., Novel bidentate complexes of Cu(Ⅱ) derived from 5-nitrofuran-2-carboxaldehyde thiosemicarbazones with antiamoebic activity against E. histolytica, Eur. J. Med. Chem. 40 (2005) 557-562.

    14. [14]

      [14] G. Vatsa, O.P. Pandey, S.K. Sengupta, Synthesis, spectroscopic and toxicity studies of titanocene chelates of isatin-3-thiosemicarbazones, Bioinorg. Chem. Appl. 3 (2005) 151-160.

    15. [15]

      [15] The characteristic data for representative compounds L1: pale yellow solid, 78% yield, mp: 200-202℃. Anal. Calcd. for C14H13ClN4S(%): C, 55.17; H, 4.27; N, 18.39. Found: C, 55.13; H, 4.18; N, 18.45. IR (KBr, cm-1): ν (NH2)aromatic 1622, ν (C=N) 1591, ν (C=S) 818. UV-vis (DMF, nm): 267, 319. 1H NMR (500 MHz, DMSO-d6): δ 5.29 (s, 2H, Ar-NH2), 6.91 (d, 1H, J=9.0 Hz, Ar-H), 6.92 (d, 1H, J=2.5 Hz, Ar-H), 7.27-7.30 (dd, 1H, J=2.5, 9.0 Hz, Ar-H), 7.36-7.41 (m, 3H, Ar-H), 7.70-7.71 (m, 2H, Ar-H), 8.28 (s, 1H, CSNH2), 8.61 (s, 1H, CSNH2), 8.61 (s, 1H, NH). 13C NMR (125 MHz, DMSO-d6): δ 119.68 (C-Cl), 144.62 (C-NH2), 146.43 (C=N), 178.07 (C=S). Complex 1: army green, 60% yield, mp: 186-187℃. Anal. Calcd. for[Cu(L1)Cl]Cl·H2O (%): C, 36.76; H, 3.28; N, 12.25. Found: C, 36.84; H, 3.22; N, 12.18. IR (KBr, cm-1): ν (NH2)aromatic 1635, (C=N) 1580, ν (C=S) 801. UV-vis (DMF, nm): 272, 293, 364, 433, 622. m/z (ESI MS): 367.8 (M+-2Cl-H2O, 62%). μeff: 1.78 B.M.

    16. [16]

      [16] G.L. Ellman, D. Courtney, V.J. Andres, et al., A new and rapid colorimetric determination of acetylcholinesterase activity, BioChem. Pharmacol. 7 (1961) 88-95.

    17. [17]

      [17] A. Zawadzka, I. Łozińska, Z. Molęda, et al., Highly selective inhibition of butyrylcholinesterase by a novel melatonin-tacrine heterodimers, J. Pineal Res. (2012).

    18. [18]

      [18] S.M. Salga, H.M. Ali, M.A. Abdullah, et al., Synthesis, characterization, acetylcholinesterase inhibition, molecular modeling and antioxidant activities of some novel Schiff bases derived from 1-(2-ketoiminoethyl)piperazines, Molecules 16 (2011) 9316-9330.

  • 加载中
    1. [1]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    2. [2]

      Wenjuan JinZelong ChenYi WangJiaxuan LiJiahui LiYuxin PeiZhichao Pei . Nano metal-photosensitizer based on Aza-BODIPY-Cu complex for CDT-enhanced dual phototherapy. Chinese Chemical Letters, 2024, 35(7): 109328-. doi: 10.1016/j.cclet.2023.109328

    3. [3]

      Kexin YuanYulei LiuHaoran FengYi LiuJun ChengBeiyang LuoQinglian WuXinyu ZhangYing WangXian BaoWanqian GuoJun Ma . Unlocking the potential of thin-film composite reverse osmosis membrane performance: Insights from mass transfer modeling. Chinese Chemical Letters, 2024, 35(5): 109022-. doi: 10.1016/j.cclet.2023.109022

    4. [4]

      Fang-Yuan ChenWen-Chao GengKang CaiDong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161

    5. [5]

      Caihong MaoYanfeng HeXiaohan WangYan CaiXiaobo Hu . Synthesis and molecular recognition characteristics of a tetrapodal benzene cage. Chinese Chemical Letters, 2024, 35(8): 109362-. doi: 10.1016/j.cclet.2023.109362

    6. [6]

      Cheng-Da ZhaoHuan YaoShi-Yao LiFangfang DuLi-Li WangLiu-Pan Yang . Amide naphthotubes: Biomimetic macrocycles for selective molecular recognition. Chinese Chemical Letters, 2024, 35(4): 108879-. doi: 10.1016/j.cclet.2023.108879

    7. [7]

      Chao Ma Cong Lin Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209

    8. [8]

      Mengjuan SunMuye ZhouYifang XiaoHailei TangJinhua ChenRuitao ZhangChunjiayu LiQi YaQian ChenJiasheng TuQiyue WangChunmeng Sun . Reversibly size-switchable polyion complex micelles for antiangiogenic cancer therapy. Chinese Chemical Letters, 2024, 35(7): 109110-. doi: 10.1016/j.cclet.2023.109110

    9. [9]

      Yuanjin ChenXianghui ShiDajiang HuangJunnian WeiZhenfeng Xi . Synthesis and reactivity of cobalt dinitrogen complex supported by nonsymmetrical pincer ligand. Chinese Chemical Letters, 2024, 35(7): 109292-. doi: 10.1016/j.cclet.2023.109292

    10. [10]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    11. [11]

      Jingwen ZhaoJianpu TangZhen CuiLimin LiuDayong YangChi Yao . A DNA micro-complex containing polyaptamer for exosome separation and wound healing. Chinese Chemical Letters, 2024, 35(9): 109303-. doi: 10.1016/j.cclet.2023.109303

    12. [12]

      Ya-Ping LiuZhi-Rong GuiZhen-Wen ZhangSai-Kang WangWei LangYanzhu LiuQian-Yong Cao . A phenylphenthiazide anchored Tb(Ⅲ)-cyclen complex for fluorescent turn-on sensing of ClO. Chinese Chemical Letters, 2025, 36(2): 109769-. doi: 10.1016/j.cclet.2024.109769

    13. [13]

      Zhimin SunXin-Hui GuoYue ZhaoQing-Yu MengLi-Juan XingHe-Lue Sun . Dynamically switchable porphyrin-based molecular tweezer for on−off fullerene recognition. Chinese Chemical Letters, 2024, 35(6): 109162-. doi: 10.1016/j.cclet.2023.109162

    14. [14]

      Li LinSong-Lin TianZhen-Yu HuYu ZhangLi-Min ChangJia-Jun WangWan-Qiang LiuQing-Shuang WangFang Wang . Molecular crowding electrolytes for stabilizing Zn metal anode in rechargeable aqueous batteries. Chinese Chemical Letters, 2024, 35(7): 109802-. doi: 10.1016/j.cclet.2024.109802

    15. [15]

      Minghao HuTianci XieYuqiang HuLongjie LiTing WangTongbo Wu . Allosteric DNAzyme-based encoder for molecular information transfer. Chinese Chemical Letters, 2024, 35(7): 109232-. doi: 10.1016/j.cclet.2023.109232

    16. [16]

      Chuan-Zhi NiRuo-Ming LiFang-Qi ZhangQu-Ao-Wei LiYuan-Yuan ZhuJie ZengShuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862

    17. [17]

      Wei-Jia WangKaihong Chen . Molecular-based porous polymers with precise sites for photoreduction of carbon dioxide. Chinese Chemical Letters, 2025, 36(1): 109998-. doi: 10.1016/j.cclet.2024.109998

    18. [18]

      Dongpu WuZheng YangYuchen XiaLulu WuYingxia ZhouCaoyuan NiuPuhui XieXin ZhengZhanqi Cao . Surface controllable wettability using amphiphilic rotaxane molecular shuttles. Chinese Chemical Letters, 2025, 36(2): 110353-. doi: 10.1016/j.cclet.2024.110353

    19. [19]

      Bingwei WangYihong DingXiao Tian . Benchmarking model chemistry composite calculations for vertical ionization potential of molecular systems. Chinese Chemical Letters, 2025, 36(2): 109721-. doi: 10.1016/j.cclet.2024.109721

    20. [20]

      Zhijia ZhangShihao SunYuefang ChenYanhao WeiMengmeng ZhangChunsheng LiYan SunShaofei ZhangYong Jiang . Epitaxial growth of Cu2-xSe on Cu (220) crystal plane as high property anode for sodium storage. Chinese Chemical Letters, 2024, 35(7): 108922-. doi: 10.1016/j.cclet.2023.108922

Metrics
  • PDF Downloads(0)
  • Abstract views(656)
  • HTML views(19)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return