Citation:
Xiao-Chun Yu, Bo Li, Bao-Hua Yu, Qing Xu. Efficient synthesis of unsymmetrical diaryl thioethers via TBAF-mediated denitrative substitution of nitroarenes with PhSTMS under mild and neutral conditions[J]. Chinese Chemical Letters,
;2013, 24(07): 605-608.
-
Tetrabutylammonium fluoride (TBAF) effectively facilitated a denitrative substitution reaction of electron-deficient nitroarenes with phenylthiotrimethylsilane (PhSTMS) under mild and base-free neutral conditions at room temperature, providing a practical and efficient synthesis of useful unsymmetrical diaryl thioethers. Nitroarenes bearing ortho-and para-positioned electron-withdrawing groups are the most reactive substrates, indicating that this reaction most possibly proceeded via the nucleophilic aromatic substitution (SNAr) mechanism.
-
-
-
[1]
[1] L. Liu, J.E. Stelmach, S.R. Natarajan, et al., SAR of 3,4-dihydropyrido[3,2-d]pyrimidone p38 inhibitors, Bioorg. Med. Chem. Lett. 13 (2003) 3979-3982.
-
[2]
[2] G. Liu, J.R. Huth, E.T. Olejniczak, et al., Novel p-arylthio cinnamides as antagonists of leukocyte function-Associated antigen-1/intracellular adhesion molecule-1 interaction. 2. Mechanism of inhibition and structure-based improvement of pharmaceutical properties, J. Med. Chem. 44 (2001) 1202-1210.
-
[3]
[3] F. Ullmann, Ueber eine neue Darstellungsweise von Phenyläthersalicylsäure, Chem. Ber. 37 (1904) 853-854.
-
[4]
[4] S.V. Ley, A.W. Thomas, Modern synthetic methods for copper-mediated C(aryl)-O, C(aryl)-N, and C(aryl)-S bond formation, Angew. Chem. Int. Ed. 42 (2003) 5400-5449.
-
[5]
[5] I.P. Beletskaya, A.V. Cheprakov, Copper in cross-coupling reactions. The post-Ullmann chemistry, Coord. Chem. Rev. 248 (2004) 2337-2364.
-
[6]
[6] D. Prim, J. Campagne, D. Joseph, B. Andrioletti, Palladium-catalysed reactions of aryl halides with soft, non-organometallic nucleophiles, Tetrahedron 58 (2002) 2041-2075.
-
[7]
[7] J.F. Hartwig, Evolution of a fourth generation catalyst for the amination and thioetherification of aryl halides, Acc. Chem. Res. 41 (2008) 1534-1544.
-
[8]
[8] F.Y. Kwong, S.L. Buchwald, A general, efficient, and inexpensive catalyst system for the coupling of aryl iodides and thiols, Org. Lett. 4 (2002) 3420-3517.
-
[9]
[9] A.K. Verma, J. Singh, R. Chaudhary, A general and efficient CuI/BtH catalyzed coupling of aryl halides with thiols, Tetrahedron Lett. 48 (2007) 7199-7202.
-
[10]
[10] S. Jammi, S. Sakthivel, L. Rout, et al., CuO nanoparticles catalyzed C-N, C-O, and C-S cross-coupling reactions: scope andmechanism, J. Org.Chem. 74 (2009) 1971-1976.
-
[11]
[11] A. Correa, A. Carril, C. Bolm, Iron-catalyzed S-arylation of thiols with aryl iodides, Angew. Chem. Int. Ed. 47 (2008) 2880-2883.
-
[12]
[12] S. Jammi, P. Barua, L. Rout, P. Saha, T. Punniyamurthy, Efficient ligand-free nickelcatalyzed C-S cross-coupling of thiols with aryl iodides, Tetrahedron Lett. 49 (2008) 1484-1487.
-
[13]
[13] J.F. Bunnett, R.E. Zahler, Aromatic nucleophilic substitution reactions, Chem. Rev. 49 (1951) 273-412.
-
[14]
[14] J. Zhu, SNAr based macrocyclization via biaryl ether formation: application in natural product synthesis, Synlett (1997) 133-144.
-
[15]
[15] J.S. Sawyer, Recent advances in diaryl ether synthesis, Tetrahedron 56 (2000) 5045-5065.
-
[16]
[16] J.S. Sawyer, E.A. Schmittling, J.A. Palkowitz,W.J. Smith Ⅲ., Synthesis of diaryl ethers, diaryl thioethers, and diarylamines mediated by potassium fluoride-alumina and 18-crown-6: expansion of scope and utility, J. Org. Chem. 63 (1998) 6338-6343.
-
[17]
[17] J.R. Beck, Nucleophilic displacement of aromatic nitro groups, Tetrahedron 34 (1978) 2057-2068.
-
[18]
[18] A. Kondoh, H. Yorimitsu, K. Oshima, Nucleophilic aromatic substitution reaction of nitroarenes with alkyl-or aryl-thio groups in dimethyl sulfoxide by means of cesium carbonate, Tetrahedron 62 (2006) 2357-2360.
-
[19]
[19] P. Beier, T. Pastýříková, N. Vida, G. Iakobson, SNAr reactions of nitro-(pentafluorosulfanyl) bnezenes to generate SF5 aryl ethers and sulfides, Org. Lett 13 (2011) 1466-1469.
-
[20]
[20] X. Zheng, J. Ding, J. Chen, et al., The coupling of arylboronic acids with nitroarenes catalyzed by rhodium, Org. Lett. 13 (2011) 1726-1729.
-
[21]
[21] B. Yu, X. Zang, X. Yu, Q. Xu, TBAF-catalysed facile synthesis of unsymmetrical diaryl thioethers via mild SNAr reactions, J. Chem. Res. 34 (2010) 351-353.
-
[22]
[22] C. Liu, X. Zang, B. Yu, X. Yu, Q. Xu, Microwave-promoted TBAF-catalyzed SNAr reaction of aryl fluorides and ArSTMS: an efficient synthesis of unsymmetrical diaryl thioethers, Synlett (2011) 1143-1148.
-
[23]
[23] J.Y. Lee, P.H. Lee, Palladium-catalyzed carbon-ulfur cross-coupling reactions with indium tri(organothiolate) and its application to sequential one-pot processes, J. Org. Chem. 73 (2008) 7413-7416.
-
[24]
[24] Y.C. Wong, T.T. Jayanth, C.H. Cheng, Cobalt-catalyzed aryl-sulfur bond formation, Org. Lett. 8 (2006) 5613-5616.
-
[25]
[25] H. Gilman, F.J. Webb, The metalation of some sulfur-containing organic compounds, J. Am. Chem. Soc. 71 (1949) 4062-4066.
-
[26]
[26] H. Xu, X. Zhao, J. Deng, Y. Fu, Y. Feng, Efficient C-S cross coupling catalyzed by Cu2O, Tetrahedron Lett. 50 (2009) 434-437.
-
[27]
[27] N. Taniguchi, Convenient synthesis of unsymmetrical organochalcogenides using organoboronic acids with dichalcogenides via cleavage of the S-S, Se-Se, or Te-Te bond by a copper catalyst, J. Org. Chem. 72 (2007) 1241-1245.
-
[28]
[28] R.E. Parker, T.O. Read, The mechanism of displacement reactions. Part Ⅲ. Kinetics of the reactions of the four 2-halogeno-1,3-dinitrobenzenes and 1,2,3-trinitrobenzene with aniline in ethanol, J. Chem. Soc (1962) 3149-3153.
-
[1]
-
-
-
[1]
Xiao-Tong Sun , Hao-Fei Ni , Yi Zhang , Da-Wei Fu . Hybrid perovskite shows temperature-dependent photoluminescence and dielectric response triggered by halogen substitution. Chinese Journal of Structural Chemistry, 2024, 43(6): 100212-100212. doi: 10.1016/j.cjsc.2024.100212
-
[2]
Zhirong Yang , Shan Wang , Ming Jiang , Gengchen Li , Long Li , Fangzhi Peng , Zhihui Shao . One stone three birds: Ni-catalyzed asymmetric allenylic substitution of allenic ethers, hydroalkylation of 1,3-enynes and double alkylation of enynyl ethers. Chinese Chemical Letters, 2024, 35(8): 109518-. doi: 10.1016/j.cclet.2024.109518
-
[3]
Guangchang Yang , Shenglong Yang , Jinlian Yu , Yishun Xie , Chunlei Tan , Feiyan Lai , Qianqian Jin , Hongqiang Wang , Xiaohui Zhang . Regulating local chemical environment in O3-type layered sodium oxides by dual-site Mg2+/B3+ substitution achieves durable and high-rate cathode. Chinese Chemical Letters, 2024, 35(9): 109722-. doi: 10.1016/j.cclet.2024.109722
-
[4]
Yuanjiao Liu , Xiaoyang Zhao , Songyao Zhang , Yi Wang , Yutuo Zheng , Xinrui Miao , Wenli Deng . Site-selection and recognition of aromatic carboxylic acid in response to coronene and pyridine derivative. Chinese Chemical Letters, 2024, 35(8): 109404-. doi: 10.1016/j.cclet.2023.109404
-
[5]
Hong Zhang , Cui-Ping Li , Li-Li Wang , Zhuo-Da Zhou , Wen-Sen Li , Ling-Yi Kong , Ming-Hua Yang . Asperochones A and B, two antimicrobial aromatic polyketides from the endophytic fungus Aspergillus sp. MMC-2. Chinese Chemical Letters, 2024, 35(9): 109351-. doi: 10.1016/j.cclet.2023.109351
-
[6]
Dongying Fu , Lin Pan , Yanli Ma , Yue Zhang . Bilayered Dion–Jacobson lead-iodine hybrid perovskite with aromatic spacer for broadband photodetection. Chinese Chemical Letters, 2025, 36(2): 109621-. doi: 10.1016/j.cclet.2024.109621
-
[7]
Tingting Huang , Zhuanlong Ding , Hao Liu , Ping-An Chen , Longfeng Zhao , Yuanyuan Hu , Yifan Yao , Kun Yang , Zebing Zeng . Electron-transporting boron-doped polycyclic aromatic hydrocarbons: Facile synthesis and heteroatom doping positions-modulated optoelectronic properties. Chinese Chemical Letters, 2024, 35(4): 109117-. doi: 10.1016/j.cclet.2023.109117
-
[8]
Junjun Huang , Ran Chen , Yajian Huang , Hang Zhang , Anran Zheng , Qing Xiao , Dan Wu , Ruxia Duan , Zhi Zhou , Fei He , Wei Yi . Discovery of an enantiopure N-[2-hydroxy-3-phenyl piperazine propyl]-aromatic carboxamide derivative as highly selective α1D/1A-adrenoceptor antagonist and homology modelling. Chinese Chemical Letters, 2024, 35(11): 109594-. doi: 10.1016/j.cclet.2024.109594
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(611)
- HTML views(17)