Citation: Zong-Hua Wang, Jian-Fei Xia, Qiang Han, Hai-Ning Shi, Xin-Mei Guo, Hui Wang, Ming-Yu Ding. Multi-walled carbon nanotube as a solid phase extraction adsorbent for analysis of indole-3-butyric acid and 1-naphthylacetic acid in plant samples[J]. Chinese Chemical Letters, ;2013, 24(07): 588-592. shu

Multi-walled carbon nanotube as a solid phase extraction adsorbent for analysis of indole-3-butyric acid and 1-naphthylacetic acid in plant samples

  • Corresponding author: Zong-Hua Wang, 
  • Received Date: 29 March 2013
    Available Online: 8 April 2013

  • In this work, a new sample pretreatment method prior to HPLC separations was developed for the determination of auxins in plant samples. Owing to its large surface area and high adsorption capacity, multi-walled carbon nanotube (MWCNT) was chosen as the adsorbent for the extraction of auxins from plant samples. In this study, two important auxins were selected as model analytes, namely indole-3-butyric acid (IBA) and 1-naphthylacetic acid (NAA). They could be extracted and concentrated due to their π-π stacking interactions with MWCNT. Then HPLC-UV was introduced to detect IBA and NAA after sample pretreatment. Factors that may affect the enrichment efficiency were investigated and optimized. Comparative studies showed that MWCNT was superior to C18 for the extraction of the two analytes. Validation experiments showed that the optimized method had good linearity (0.9998 and 0.9960), high recovery (81.4%-85.4%), and low detection limits (0.0030 mg/L and 0.0012 mg/L). The results indicated that the novel method had advantages of convenience, good sensitivity, high efficiency, and it was feasible for the determination of auxins in plant samples.
  • 加载中
    1. [1]

      [1] G.C. Aurelio, J. Mehouachi, F.R. Tadeo, P.M. Eduardo, M. Talon, Hormonal regulation of fruitlet abscission induced by carbohydrate shortage in citrus, Planta 210 (2000) 636-643.

    2. [2]

      [2] P.J. O'Donnell, E. Schmelz, A. Block, et al., Multiple hormones act sequentially to mediate a susceptible tomato pathogen defense response, Plant Physiol. 133 (2003) 1181-1189.

    3. [3]

      [3] M. Qamar, M.J. Muneer, Comparative photocatalytic study of two selected pesticide derivatives, indole-3-acetic acid and indole-3-butyric acid in aqueous suspensions of titanium dioxide, J. Hazard. Mater. 120 (2005) 219-227.

    4. [4]

      [4] D.Y. Kong, L.L. Shi, Z.J. Shan, F. Ge, S.X. Gao, Determination of α-naphthylacetic acid by ASE-GPC coupled with HPLC, J. Instrum. Anal. 29 (2010) 382-385.

    5. [5]

      [5] X.Q. Pan, R. Welti, X.M. Wanghttp, Simultaneous quantification of major phytohormones and related compounds in crude plant extracts by liquid chromatography electrospray tandem mass spectrometry, Phytochemistry 69 (2008) 1773-1781.

    6. [6]

      [6] S.J. Hou, J. Zhu, M.Y. Ding, G.H. Lv, Simultaneous determination of gibberellic acid, indole-3-acetic acid and abscisic acid in wheat extracts by solid-phase extraction and liquid chromatography-electrospray tandem mass spectrometry, Talanta 76 (2008) 798-802.

    7. [7]

      [7] A.J. Shah, R. de la Flor, A. Atkins, M.J. Slone, L.A. Dawson, Development and application of a liquid chromatography/tandem mass spectrometric assay for measurement of N-acetylaspartate, N-acetylaspartylglutamate and glutamate in brain slice superfusates and tissue extracts, J. Chromatogr. B 876 (2008) 153-158.

    8. [8]

      [8] L.S. Barkawi, Y.Y. Tam, J.A. Tillman, et al., A high-throughput method for the quantitative analysis of indole-3-acetic acid and other auxins from plant tissue, Anal. Biochem. 372 (2008) 177-188.

    9. [9]

      [9] H. Chen, X.F. Guo, H.S. Zhang, H. Wang, Simultaneous determination of phytohormones containing carboxyl in crude extracts of fruit samples based on chemical derivatization by capillary electrophoresis with laser-induced fluorescence detection, J. Chromatogr. B 879 (2011) 1802-1808.

    10. [10]

      [10] Y.H. Li, F. Wei, X.Y. Dong, et al., Simultaneous analysis of multiple endogenous plant hormones in leaf tissue of oilseed rape by solid-phase extraction coupled with high-performance liquid chromatography-electrospray ionisation tandem mass spectrometry, Phytochem. Anal. 22 (2011) 442-449.

    11. [11]

      [11] F. Matsuda, H. Miyazawa, K. Wakasa, H. Miyagawa, Quantification of indole-3-acetic acid and amino acid conjugates in rice by liquid chromatography-electrospray ionization-tandem mass spectrometry, Biosci. Biotechnol. Biochem. 69 (2005) 778-783.

    12. [12]

      [12] H.W. Zhang, K. Li, Z.X. Liang, F.Y. Wang, Q.W. Lu, Development of a monolithic polymer pipette for solid-phase extraction of liquiritigenin in rat plasma, Chin. Chem. Lett. 23 (2012) 723-726.

    13. [13]

      [13] S.W. Zhang, C.J. Zou, N. Luo, et al., Determination of urinary 8-hydroxy-20-deoxyguanosine by capillary electrophoresis with molecularly imprinted monolith in-tube solid phase microextraction, Chin. Chem. Lett. 21 (2010) 85-88.

    14. [14]

      [14] X. Tong, X.H. Xiao, G.K. Li, On-line coupling of dynamic microwave-assisted extraction with high-speed counter-current chromatography for continuous isolation of nevadensin from lyeicnotus pauciflorus maxim, J. Chromatogr. B 879 (2011) 2397-2402.

    15. [15]

      [15] Z.H. Wang, S.F. Xiao, Y. Chen, Electrocatalytic and analytical response of β-cyclodextrin incorporated carbon nanotubes-modified electrodes toward guanine, Electroanalysis 22 (2011) 2057-2061.

    16. [16]

      [16] Z.H. Wang, S.F. Xiao, Y. Chen, β-Cyclodextrin incorporated carbon nanotubesmodified electrodes for simultaneous determination of adenine and guanine, J. Electroanal. Chem. 589 (2006) 237-242.

    17. [17]

      [17] R.Q. Long, R.T. Yang, Carbon nanotubes as superior sorbent for dioxin removal, J. Am. Chem. Soc. 123 (2001) 2058-2059.

    18. [18]

      [18] Y.Q. Cai, G.B. Jiang, J.F. Liu, Q.X. Zhou, Multiwalled carbon nanotubes as a solidphase extraction adsorbent for the determination of bisphenol A, 4-n-nonylphenol, and 4-tert-octylphenol, Anal. Chem. 75 (2003) 2517-2521.

    19. [19]

      [19] M. Valcárcel, S. Cárdenas, B.M. Simonet, R. Lucena, Carbon nanostructures as sorbent materials in analytical processes, Trends Anal. Chem. 27 (2008) 34-43.

    20. [20]

      [20] B.F. Liu, X.H. Zhong, Y.T. Lu, Analysis of plant hormones in tobacco flowers by micellar electrokinetic capillary chromatography coupled with on-line large volume sample stacking, J. Chromatogr. A 945 (2002) 257-265.

    21. [21]

      [21] Y.M. Zhou, X. Xin, Determination of plant hormone residues in vegetables and fruits by high performance liquid chromatography, Food Sci. 31 (2010) 301-304.

  • 加载中
    1. [1]

      Shuangying LiQingxiang ZhouZhi LiMenghua LiuYanhui Li . Sensitive measurement of silver ions in environmental water samples integrating magnetic ion-imprinted solid phase extraction and carbon dot fluorescent sensor. Chinese Chemical Letters, 2024, 35(5): 108693-. doi: 10.1016/j.cclet.2023.108693

    2. [2]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    3. [3]

      Runze Liu Yankai Bian Weili Dai . Qualitative and quantitative analysis of Brønsted and Lewis acid sites in zeolites: A combined probe-assisted 1H MAS NMR and NH3-TPD investigation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100250-100250. doi: 10.1016/j.cjsc.2024.100250

    4. [4]

      Haitao YinLiang MengLi LiJiamu XiaoLongrui LiangNannan HuangYansong ShiAngang ZhaoJingwen Hou . Polydopamine-modified biochar supported polylactic acid and zero-valent iron affects the functional microbial community structure for 1,1,1-trichloroethane removal in simulated groundwater. Chinese Chemical Letters, 2025, 36(1): 110313-. doi: 10.1016/j.cclet.2024.110313

    5. [5]

      Yiqiao ChenAo LiuBiwen YangZhenzhen LiBinggang YeZhouyi GuoZhiming LiuHaolin Chen . Photoluminescence and photothermal conversion in boric acid derived carbon dots for targeted microbial theranostics. Chinese Chemical Letters, 2024, 35(9): 109295-. doi: 10.1016/j.cclet.2023.109295

    6. [6]

      Zhen LiuZhi-Yuan RenChen YangXiangyi ShaoLi ChenXin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939

    7. [7]

      Xun ZhuChenchen ZhangYingying LiYin LuNa HuangDawei Wang . Degradation of perfluorooctanoic acid by inductively heated Fenton-like process over the Fe3O4/MIL-101 composite. Chinese Chemical Letters, 2024, 35(12): 109753-. doi: 10.1016/j.cclet.2024.109753

    8. [8]

      Junying LIXinyan CHENXihui DIAOMuhammad YaseenChao CHENHao WANGChuansong QIWei LI . Chiral fluorescent sensor Tb3+@Cd-CP based on camphoric acid for the enantioselective recognition of R- and S-propylene glycol. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2497-2504. doi: 10.11862/CJIC.20240084

    9. [9]

      Yuexiang LiuXiangqiao YangTong LinGuantian YangXiaoyong XuBubing ZengZhong LiWeiping ZhuXuhong Qian . Efficient continuous synthesis of 2-[3-(trifluoromethyl)phenyl]malonic acid, a key intermediate of Triflumezopyrim, coupling with esterification-condensation-hydrolysis. Chinese Chemical Letters, 2025, 36(1): 109747-. doi: 10.1016/j.cclet.2024.109747

    10. [10]

      Pei CaoYilan WangLejian YuMiao WangLiming ZhaoXu Hou . Dynamic asymmetric mechanical responsive carbon nanotube fiber for ionic logic gate. Chinese Chemical Letters, 2024, 35(6): 109421-. doi: 10.1016/j.cclet.2023.109421

    11. [11]

      Yan-Li LiZhi-Ming LiKai-Kai WangXiao-Long He . Beyond 1,4-addition of in-situ generated (aza-)quinone methides and indole imine methides. Chinese Chemical Letters, 2024, 35(7): 109322-. doi: 10.1016/j.cclet.2023.109322

    12. [12]

      Shengyu ZhaoQinhao ShiWuliang FengYang LiuXinxin YangXingli ZouXionggang LuYufeng Zhao . Suppression of multistep phase transitions of O3-type cathode for sodium-ion batteries. Chinese Chemical Letters, 2024, 35(5): 108606-. doi: 10.1016/j.cclet.2023.108606

    13. [13]

      Wenyi MeiLijuan XieXiaodong ZhangCunjian ShiFengzhi WangQiqi FuZhenjiang ZhaoHonglin LiYufang XuZhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825

    14. [14]

      Huipeng Zhao Xiaoqiang Du . Polyoxometalates as the redox anolyte for efficient conversion of biomass to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(2): 100246-100246. doi: 10.1016/j.cjsc.2024.100246

    15. [15]

      Dan-Ying XingXiao-Dan ZhaoChuan-Shu HeBo Lai . Kinetic study and DFT calculation on the tetracycline abatement by peracetic acid. Chinese Chemical Letters, 2024, 35(9): 109436-. doi: 10.1016/j.cclet.2023.109436

    16. [16]

      Lihang WangMary Li JavierChunshan LuoTingsheng LuShudan YaoBing QiuYun WangYunfeng Lin . Research advances of tetrahedral framework nucleic acid-based systems in biomedicine. Chinese Chemical Letters, 2024, 35(11): 109591-. doi: 10.1016/j.cclet.2024.109591

    17. [17]

      Shuai LiLiuting ZhangFuying WuYiqun JiangXuebin Yu . Efficient catalysis of FeNiCu-based multi-site alloys on magnesium-hydride for solid-state hydrogen storage. Chinese Chemical Letters, 2025, 36(1): 109566-. doi: 10.1016/j.cclet.2024.109566

    18. [18]

      Le Ye Wei-Xiong Zhang . Structural phase transition in a new organic-inorganic hybrid post-perovskite: (N,N-dimethylpyrrolidinium)[Mn(N(CN)2)3]. Chinese Journal of Structural Chemistry, 2024, 43(6): 100257-100257. doi: 10.1016/j.cjsc.2024.100257

    19. [19]

      Xiao LiWanqiang YuYujie WangRuiying LiuQingquan YuRiming HuXuchuan JiangQingsheng GaoHong LiuJiayuan YuWeijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166

    20. [20]

      Zizhuo Liang Fuming Du Ning Zhao Xiangxin Guo . Revealing the reason for the unsuccessful fabrication of Li3Zr2Si2PO12 by solid state reaction. Chinese Journal of Structural Chemistry, 2023, 42(11): 100108-100108. doi: 10.1016/j.cjsc.2023.100108

Metrics
  • PDF Downloads(0)
  • Abstract views(645)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return