Citation: Bang-Tun Zhao, Xiao-Min Zhu, Xiu-Hua Chen, Zhen-Ning Yan, Wei-Min Zhu. Novel clicked tetrathiafulvalene-calix[4]arene assemblies:Synthesis and intermolecular electron transfer toward p-chloranil[J]. Chinese Chemical Letters, ;2013, 24(07): 573-577. shu

Novel clicked tetrathiafulvalene-calix[4]arene assemblies:Synthesis and intermolecular electron transfer toward p-chloranil

  • Corresponding author: Bang-Tun Zhao,  Wei-Min Zhu, 
  • Received Date: 8 February 2013
    Available Online: 19 March 2013

  • Two tetrathiafulvalene-calix[4]arene assemblies (TTF-calix-1 and TTF-calix-2) have been synthesized by the click reaction. Both their cyclic voltammograms show, as expected, two one-electron quasi-reversible redox behavior. The UV-vis absorption spectra studies show that these two assemblies undergo progressive oxidation at the TTF moiety in presence of increasing amounts of Cu2+ or Hg2+. Moreover, the absorption studies show intermolecular electron transfer between compounds TTF-calix-1 or TTF-calix-2 and p-chloranil may be promoted by specific metal ions such as Pb2+, Sc3+ etc.
  • 加载中
    1. [1]

      [1] J. Yamada, T. Sugimoto, TTF Chemistry: Fundamentals and Applications of Tetrathiafulvalene, Kodansha-Springer, Tokyo, 2004.

    2. [2]

      [2] D. Canevet, M. Sallé, G.X. Zhang, D.Q. Zhang, D.B. Zhu, Tetrathiafulvalene (TTF) derivatives: key buildinγ-blocks for switchable processes, Chem. Commun. (2009) 2245-2269.

    3. [3]

      [3] C.D. Gutsche, Calixarenes Revisited, The Royal Society of Chemistry, Cambridge, 1998.

    4. [4]

      [4] C.D. Gutsche, Calixarenes: An Introduction, The Royal Society of Chemistry, Cambridge, 2008.

    5. [5]

      [5] J. Vicens, J.M. Harrowfield, L. Baklouti, Calixarenes in the Nanoworld, Springer Publisher, Dordrecht, Netherlands, 2007.

    6. [6]

      [6] J.B. de Vains Regnouf, M. Sallé, R. Lamartine, Conjugated p-(tetrathiafulvalenylmethylideneamino) calix[4]arene, J. Chem. Soc. Perkin Trans. 2 (1997) 2461-2463.

    7. [7]

      [7] B.T. Zhao, M.J. Blesa, N. Mercier, F. Le Derf, M. Sallé, A tetrathiafulvalene-appended calix[4]arene: synthesis and electrochemical characterization, Supramol. Chem. 17 (2005) 465-468.

    8. [8]

      [8] B.T. Zhao, M.J. Blesa, N. Mercier, F. Le Derf, M. Sallé, A calixarene-amide-tetrathiafulvalene assembly for the electrochemical detection of anions, New J. Chem. 29 (2005) 1164-1167.

    9. [9]

      [9] B.T. Zhao, M.J. Blesa, N. Mercier, F. Le Derf, M. Sallé, Biscalix[4]arenes bridged by an electroactive tetrathiafulvalene unit, J. Org. Chem. 70 (2005) 6254-6257.

    10. [10]

      [10] M.J. Blesa, B.T. Zhao, M. Allain, F. Le Derf, M. Sallé, Bis(calixcrown)tetrathiafulvalene receptors, Chem. Eur. J. 12 (2006) 1906-1914.

    11. [11]

      [11] J. Lyskawa, M. Sallé, J.Y. Balandier, et al., Monitoring the formation of TTF dimers by Na+ complexation, Chem. Commun. (2006) 2233-2235.

    12. [12]

      [12] B.T. Zhao, M.J. Blesa, F. Le Derf, et al., Carboxylic acid derivatives of tetrathiafulvalene: key intermediates for the synthesis of redox-active calixarene-based anion receptors, Tetrahedron 63 (2007) 10768-10777.

    13. [13]

      [13] J. Lyskawa, D. Canevet, M. Allain, M. Sallé, An electron-rich three dimensional receptor based on a calixarene-tetrathiafulvalene assembly, Tetrahedron Lett. 51 (2010) 5868-5872.

    14. [14]

      [14] B.T. Zhao, L.W. Liu, J.J. Ding, G.R. Qu, Synthesis of tetrathiafulvalene-calixarene derivatives and their intermolecular electron transfer towards tetrachloro-1,4-benzoquinone, Chem. J. Chin. Univ. 32 (2011) 2103-2108.

    15. [15]

      [15] M.H. Düker, R. Gómez, C.M.L. Vande Velde, V.A. Azov, Upper rim tetrathiafulvalene-bridged calix[4]arenes, Tetrahedron Lett. 52 (2011) 2881-2884.

    16. [16]

      [16] M.H. Lee, Q.Y. Cao, S.K. Kim, J.L. Sessler, J.S. Kim, Anion responsive TTF-appended calix[4]arenes: synthesis and study of two different conformers, J. Org. Chem. 76 (2011) 870-874.

    17. [17]

      [17] F. Sun, F. Hu, G.X. Zhang, Q.Y. Zheng, D.Q. Zhang, Calix[4]arenes with electroactive tetrathiafulvalene and quinone units: metal-ion-promoted electron transfer, J. Org. Chem. 76 (2011) 6883-6888.

    18. [18]

      [18] F. Sun, F. Hu, G.X. Zhang, D.Q. Zhang, Metal-ion-promoted electron transfer between tetrathiafulvalene and quinone units within a calix[4]arene framework and tuning through coordination of the neighboring crown ether with a sodium cation, Chem. Asian J. 7 (2012) 183-189.

    19. [19]

      [19] K. Flídrová, M. Tkadlecová, K. Lang, P. Lhoták, Anion complexation by calix[4]-areneeTTF conjugates, Dyes Pigments 92 (2011) 668-673.

    20. [20]

      [20] B.T. Zhao, W.B. Guo, P.Z. Hu, Synthesis, structure and electrochemical behavior of a novel redox-active thiacalix[4]arene-tetrathiafulvalene assembly, Heterocycles 81 (2010) 1661-1667.

    21. [21]

      [21] B.T. Zhao, Z. Zhou, Z.N. Yan, et al., Synthesis and electrochemical behavior of a model redox-active thiacalix[4]arene-tetrathiafulvalene assembly, Tetrahedron Lett. 51 (2010) 5815-818.

    22. [22]

      [22] B.T. Zhao, X.M. Zhu, Q.M. Peng, et al., A novel redox-active calix[4]arene-tetrathiafulvalene dyad, Cent. Eur. J. Chem. 9 (2011) 1102-108.

    23. [23]

      [23] B.T. Zhao, J.J. Li, Z. Zhou, Z.N. Yan, W.M. Zhu, Synthesis and electrochemical behavior of electroactive bistetrathiafulvalene-attached thiacalix[4]arene assemblies, Chem. Res. Chin. Univ. 28 (2012) 828-32.

    24. [24]

      [24] H.C. Kolb, M.G. Finn, K.B. Sharpless, Click chemistry: diverse chemical function from a few good reactions, Angew. Chem. Int. Ed. 40 (2001) 2004-021.

    25. [25]

      [25] M. Meldal, C.W. Torn鴈, Cu-catalyzed azide-alkyne cycloaddition, Chem. Rev. 108 (2008) 2952-015.

    26. [26]

      [26] Y.L. Zhao, W.R. Dichtel, A. Trabolsi, et al., A redox-switchable a-cyclodextrinbased[2]rotaxane, J. Am. Chem. Soc. 130 (2008) 11294-1296.

    27. [27]

      [27] B.T. Zhao, L.W. Liu, X.C. Li, G.R. Qu, A clicked tetrathiafulvalene-oxyquinoline dyad as an optical and electrochemical Zn2+ probe, Chin. J. Chem. 30 (2012) 254-58.

    28. [28]

      [28] L.W. Liu, W.B. Guo, X.C. Li, G.R. Qu, B.T. Zhao, Progress on synthesis of calixarene derivatives via click chemistry, Chin. J. Org. Chem. 30 (2010) 1960-974.

    29. [29]

      [29] E.M. Collins, M.A. McKervey, E. Madigan, et al., Chemically modified calix[4]arenes: regioselective synthesis of 1, 3-(distal) derivatives and related compounds. X-ray crystal structure of a diphenol-initrile, J. Chem. Soc., Perkin Trans. 1 (1991) 3137-142.

  • 加载中
    1. [1]

      Yiqian JiangZihan YangXiuru BiNan YaoPeiqing ZhaoXu Meng . Mediated electron transfer process in α-MnO2 catalyzed Fenton-like reaction for oxytetracycline degradation. Chinese Chemical Letters, 2024, 35(8): 109331-. doi: 10.1016/j.cclet.2023.109331

    2. [2]

      Quanyou GuoYue YangTingting HuHongqi ChuLijun LiaoXuepeng WangZhenzi LiLiping GuoWei Zhou . Regulating local electron transfer environment of covalent triazine frameworks through F, N co-modification towards optimized oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(1): 110235-. doi: 10.1016/j.cclet.2024.110235

    3. [3]

      Xiuzheng DengYi KeJiawen DingYingtang ZhouHui HuangQian LiangZhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064

    4. [4]

      Chunxiu YuZelin WuHongle ShiLingyun GuKexin ChenChuan-Shu HeYang LiuHeng ZhangPeng ZhouZhaokun XiongBo Lai . Insights into the electron transfer mechanisms of peroxydisulfate activation by modified metal-free acetylene black for degradation of sulfisoxazole. Chinese Chemical Letters, 2024, 35(8): 109334-. doi: 10.1016/j.cclet.2023.109334

    5. [5]

      Hui LiYanxing QiJia ChenJuanjuan WangMin YangHongdeng Qiu . Synthesis of amine-pillar[5]arene porous adsorbent for adsorption of CO2 and selectivity over N2 and CH4. Chinese Chemical Letters, 2024, 35(11): 109659-. doi: 10.1016/j.cclet.2024.109659

    6. [6]

      Yi LiuZhe-Hao WangGuan-Hua XueLin ChenLi-Hua YuanYi-Wen LiDa-Gang YuJian-Heng Ye . Photocatalytic dicarboxylation of strained C–C bonds with CO2 via consecutive visible-light-induced electron transfer. Chinese Chemical Letters, 2024, 35(6): 109138-. doi: 10.1016/j.cclet.2023.109138

    7. [7]

      Yun-Xin HuangLin-Qian YuKe-Yu ChenHao WangShou-Yan ZhaoBao-Cheng HuangRen-Cun Jin . Biochar with self-doped N to activate peroxymonosulfate for bisphenol-A degradation via electron transfer mechanism: The active edge graphitic N site. Chinese Chemical Letters, 2024, 35(9): 109437-. doi: 10.1016/j.cclet.2023.109437

    8. [8]

      Lumin ZhengYing BaiChuan Wu . Multi-electron reaction and fast Al ion diffusion of δ-MnO2 cathode materials in rechargeable aluminum batteries via first-principle calculations. Chinese Chemical Letters, 2024, 35(4): 108589-. doi: 10.1016/j.cclet.2023.108589

    9. [9]

      Qinghong ZhangQiao ZhaoXiaodi WuLi WangKairui ShenYuchen HuaCheng GaoYu ZhangMei PengKai Zhao . Visible-light-induced ring-opening cross-coupling of cycloalcohols with vinylazaarenes and enones via β-C-C scission enabled by proton-coupled electron transfer. Chinese Chemical Letters, 2025, 36(2): 110167-. doi: 10.1016/j.cclet.2024.110167

    10. [10]

      Yihu Ke Shuai Wang Fei Jin Guangbo Liu Zhiliang Jin Noritatsu Tsubaki . Charge transfer optimization: Role of Cu-graphdiyne/NiCoMoO4 S-scheme heterojunction and Ohmic junction. Chinese Journal of Structural Chemistry, 2024, 43(12): 100458-100458. doi: 10.1016/j.cjsc.2024.100458

    11. [11]

      Jin LongXingqun ZhengBin WangChenzhong WuQingmei WangLishan Peng . Improving the electrocatalytic performances of Pt-based catalysts for oxygen reduction reaction via strong interactions with single-CoN4-rich carbon support. Chinese Chemical Letters, 2024, 35(5): 109354-. doi: 10.1016/j.cclet.2023.109354

    12. [12]

      Xin JiangHan JiangYimin TangHuizhu ZhangLibin YangXiuwen WangBing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415

    13. [13]

      Guixu Pan Zhiling Xia Ning Wang Hejia Sun Zhaoqi Guo Yunfeng Li Xin Li . Preparation of high-efficient donor-π-acceptor system with crystalline g-C3N4 as charge transfer module for enhanced photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100463-100463. doi: 10.1016/j.cjsc.2023.100463

    14. [14]

      Xing Xiao Yunling Jia Wanyu Hong Yuqing He Yanjun Wang Lizhi Zhao Huiqin An Zhen Yin . Sulfur-defective ZnIn2S4 nanosheets decorated by TiO2 nanosheets with exposed {001} facets to accelerate charge transfer for efficient photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100474-100474. doi: 10.1016/j.cjsc.2024.100474

    15. [15]

      Kongchuan WuDandan LuJianbin LinTing-Bin WenWei HaoKai TanHui-Jun Zhang . Elucidating ligand effects in rhodium(Ⅲ)-catalyzed arene–alkene coupling reactions. Chinese Chemical Letters, 2024, 35(5): 108906-. doi: 10.1016/j.cclet.2023.108906

    16. [16]

      Chong-Yang ShiJian-Xing GongZhen LiChao ShuLong-Wu YeQing SunBo ZhouXin-Qi Zhu . Gold-catalyzed intermolecular amination of allyl azides with ynamides: Efficient construction of 3-azabicyclo[3.1.0] scaffold. Chinese Chemical Letters, 2025, 36(2): 109895-. doi: 10.1016/j.cclet.2024.109895

    17. [17]

      Songtao CaiLiuying WuYuan LiSoham SamantaJinying WangBing LiuFeihu WuKaitao LaiYingchao LiuJunle QuZhigang Yang . Intermolecular hydrogen-bonding as a robust tool toward significantly improving the photothermal conversion efficiency of a NIR-II squaraine dye. Chinese Chemical Letters, 2024, 35(4): 108599-. doi: 10.1016/j.cclet.2023.108599

    18. [18]

      Lei ZhouYoujun ZhouLizhen FangYiqiao BaiYujia MengLiang LiJie YangYong Yao . Pillar[5]arene based artificial light-harvesting supramolecular polymer for efficient and recyclable photocatalytic applications. Chinese Chemical Letters, 2024, 35(9): 109509-. doi: 10.1016/j.cclet.2024.109509

    19. [19]

      Zhixue LiuHaiqi ChenLijuan GuoXinyao SunZhi-Yuan ZhangJunyi ChenMing DongChunju Li . Luminescent terphen[3]arene sulfate-activated FRET assemblies for cell imaging. Chinese Chemical Letters, 2024, 35(9): 109666-. doi: 10.1016/j.cclet.2024.109666

    20. [20]

      Bingbing ShiYuchun WangYi ZhouXing-Xing ZhaoYizhou LiNuoqian YanWen-Juan QuQi LinTai-Bao Wei . A supramolecular oligo[2]rotaxane constructed by orthogonal platinum(Ⅱ) metallacycle and pillar[5]arene-based host–guest interactions. Chinese Chemical Letters, 2024, 35(10): 109540-. doi: 10.1016/j.cclet.2024.109540

Metrics
  • PDF Downloads(0)
  • Abstract views(614)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return